A Deduction Model of Bellef
and its Logics

Techhical Note 326 '
August 16, 1984

Kurt Konolige
Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Dlvxsxon

Thls research was made poss:ble in pari by a g:ft [rom the System Development

. Foundation. It was “also supported in part by Contract N00014-80-C-0296 from the
Office of Naval Research, and by Contract F49620-82-K-0031 from the Air Force
Office o[Scientific Research.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
16 AUG 1984 2. REPORT TYPE 00-08-1984 to 00-08-1984
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Deduction Model of Belief and Its L ogics £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 310
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

© Copyright 1984
by

Kurt Konolige = -

Abstract

Reasoning about the knowledge and beliefs of computer and human agents
is assuming increasing importance in artificial intelligence systems for natural lan-
guage understanding, planning, and knowledge representation. A natural model of
belief for robot agents is the deduction model: an agent is represented as having an
initial set of beliefs about the world in some internal language and a deduction pro-
cess for deriving some (but not necessarily all) logical consequences of these beliefs.
Because the deduction model is an explicitly computational model, it is possible to

take into account limitations of an agent’s resources when reasoning.

This thesis is an investigation of a Gentzen-type formalization of the deduc-
tive model of belief. Several original results are proved. Among these are soundness
and completeness theorems for a deductive belief logic; a correspondence result that
relates our deduction model to competing possible-world models; and a modal ana-
log to Herbrand’s Theorem for the belief logic. Specialized techniques for automatic

deduction based on resolution are developed using this theorem.

Several other topics of knowledge and belief are explored in the thesis from

the viewpoint of the deduction model, including

s A theory of introspection about self-beliefs

e a theory of circumscriptive ignorance, in which facts that an
agent doesn’t know are formalized by limiting or circumscrib-
ing the information available to him.

This report is a slightly revised version of a thesis submitted to the Depart-
ment of Computer Science at Stanford University in June, 1984, in partial fulfillment

of the requirements for the degree of Doctor of Philosophy.

vi

Acknowledgments

I could not have produced a thesis with as many mathematical symbols and
theorems as this one without generous help from many people. This is the place to

thank them.

First and foremost, my reading committee: John McCarthy, Nils Nilsson, and

Solomon Feferm»:, who gave their time, expertise, and most important, signatures.

I am especially indebted to Nils, who encouraged me in the hard days of
conception, and prodded me through the long days of completion. He generously
shared his exceptional insight and experience in the field. You can’t find a better

reader.

The researchers at SRL: most of them had 2 hand in the thesis in one way
or another—listening to talks, reading drafts, making comments (not all of them
directed at the thesis, naturally). They made the dreary grind of thesis work more

bearable.

SRI, you lovable bloat of an organization: for paying my salary.

And, of course, my Friend jj.

vii

Contents

ILLUSTRATIONS o v i e e e e e v e e e e e e e e e e s Xl
TABLES e e e e e e e e e e e e e e e e . L XV
i. INTRODUCTION T |
1.1 The Deduction Model 5
1.2 Scopeofthe Thesis 9
1.3 Outline of the Thesis T
2. THE DEDUCTION MODEL OF BELIEF 17
2.1 Planning and Beliefs: the Belief Subsystem Abstraction 17
2.2 A Formal Model of Belief] |
3. THE LocGic FAMILY B39
3.1 Block Tableaux e e e e e e . .40
3.2 The Languageof B P 16
3.3 A Sequent SystemforB O £
3.4 The Nonintrospective Logic Family BK52
4. MODEL THEORY FOR THE LANGUAGE B 61
4.1 Models and Interpretations63
4.2 Soundness and Completeness 67
5. REPRESENTATIONAL EXTENSIONSTOB.11
5.1 Knowledge O 6
5.2 Circumscriptive Ignorance73
53 Common Beliefs80
5.4 A Simple Theory of Situations82

ix

10.

11.

12.

13.

5.5 The System Bt

THREE PROBLEMS IN THE REPRESENTATION OF BELIEF
6.1 The Chess Problem
6.2 The Syllogism Problem e e e e e e e
6.3 The Not-So-Wise-Man Problem

INTROSPECTION C e e e e e e e e

7.1 The Introspective Machme e e e e e
7.2 Introspective Deduction Structures . .
7.3 Belief Logics for Introspective Belief Subsystems

OTHER FORMAL APPROACHES TO BELIEF

8.1 The Possible-World Model
8.2 The Symbol-Processing Model .

QUANTIFYING IN
9.1 The LanguageofgB
9.2 Sequent Systems for gB . . e e e e e e e
9.3 Model Theory forgB
9.4 Correspondence Property for qB

- . - .

. 84

. 87
. 87
. 93

. 99

- . - .

PROOF METHODS: DAVIS-PUTNAM GENERALIZED FOR BT . .

10.1 A Generalized Davis-Putnam Method
10.2 The Method for Unquantified B e e
10.3 The Method for Unquantified Bf

HERBRAND’S THEOREM FOR qB WITH FUNCTIONS . . .

11.1 Skolemization for gB .
11.2 Normative Herbrand Models
11.3 Semantic Trees

RESOLUTION METHODS FORgqB

12.1 Unification and Resolution . . . R
12.2 Resolution Systems for Schematic Behef Deductlon
12.3 Unit Resolution and Rule-based Deduction Systems

CONCLUSION .
13.1 Summary 0. ...

113

113
125
130

137

140
153

163
164
173
176
182

101

192
203
205

215

216
223
228

237

238
259
267

277
277

13.2 Future Directions

GLOSSARY .

APPENDIX A: PROOF OF THE WISE MAN PUZZLE .

REFERENCES

xi

278

281

283

201

Illustrations

2.1 Schematic of a Belief Subsystem 19
7.1 An Introspective Belief Subsystem 114
7.2 Lattice of Introspection Properties 123
11.1 A Semantic Treefor P, Q,and R. 229
11.2 A Semantic Tree for P, [S;]P, and [S;|-P. . . e 230
11.3 A Semantic Tree for P, [§;]P, and [S;]-P. 232

Xill

7.1

7.2

7.3

7.4

8.1

8.2

Tables

Sample Response Table
Perfect Response Table
Response Table for Faithfulness
Response Tables for Positive and Negative Fulfillment
Models and Languages

Deductive Belief Logics vs. Normal Modal Logics . .

XV

.......

.......

.......

.......

117

118

119

121

138

149

1. Introduction

Two artificially intelligent (AI) computer agents begin to play a game of

chess, and the following conversation ensues:

Si: Do you know the rules of chess?

So: Yes.

S1: Then you know whether White has a forced initial win or not.
Sa: Upon reflection, I realize that I must.

S1: Then there is no reason to play.

SQ: No.

Both agents are state-of-the-art comstructions, incorporating the latest Al
research in chess playing, natural-language understanding, planning, etc. But, be-
cause of the overwhelming combinatorics of the game, not even the fastest forseeable
computers would be able to search the entire game tree of chess to find out whether
White has a forced win. Why then do they come to such an odd conclusion about

their own knowledge of chess?

The chess scenario is based not on computations of the game tree of chess,
but on the agents’ reasoning about their knowledge of the game. Simply put, they
have an inaccurate mode] of their own capabilities. S; knows that chess is a finite
game, and thus reasons that, in principle, knowing the rules of chess is all that is
required to figure out whether White has a forced initial win. After learning that
So does indeed know the rules of chess, he comes to the erroneous conclusion that

So also knows this particular consequence of the rules, And S; himself, reflecting on

2 Chapter I: Introduction

his own knowledge in the same manner, arrives at the same conclusion, even though
in actual fact he could never carry out the computations necessary to demonstrate

it.

To reason about the beliefs of an intelligent agent {artificial or otherwise),
an Al system like S; or So must assume some model of that agent’s beliefs about
the world. By model we mean an abstract characterization of the actual object
under consideration. A model is an abstraction because, for the sake of simplicity,
it normally does not have all of the properties of the object it is modelling. The
chess scenario above is an anecdotal example of the way models of belief that are
too simplistic can lead to behavior that is less than intelligent in artificial agents. In
this case, the model makes the assumption that agents can deduce all of the logical
consequences of their beliefs; we call this property consequential closure, since it
assumes that the beliefs of an agent are closed with respect to the derivation of
consequences. 1t is clearly not warranted for either mechanical or human agents,
because some derivations, although they are logically correct, may not be compu-

tationally feasible; this is, in fact, illustrated by the chess scenario.

In this thesis we will be concerned with developing an appropriate formal
model of belief for robot planning and problem-solving systems, where the robots
must represent and reason about states of the world and how their actions affect
them. We argue that the two most important properties of such a model are:

e agents can draw conclusions from an initial set of beliefs, but

e they do not necessarily derive all the logically possible ones.

The first of these properties reflects the observation that robot agents can
represent facts about the world, and perform inferences to reason about these facts
and draw conclusions from them. Chess-playing agents, for example, can reason
about the rules of chess to show that a certain sequence of moves is legal. However,
robot agents are also computational devices, and, as such, they have limitations—

restraints on the time and space they can allocate to perform inferences. Thus

Chapter 1: Introduction 3

arises the second property: certain inferences may be logically possible, but they

are infeasible from a computational point of view. This is the point of the chess

anecdote.

The best current formal models of belief can capture the first property. These
models are based on the idea that an agent’s beliefs can be represented as a set of
possible worlds compatible with those beliefs. The possible-world model is successful
in addressing a number of representational issues concerning knowledge and belief,
especially those concerning quantification into the context of a belief. It also has an
elegant and concise axiomatization in terms of normal modal logics, which we discuss
in Chapter 8. It has been the formal basis for a number of important theoretical
studies in Al, as well as implemented systems in which the representation of belief

was a critical factor.

However, a shortcoming of the possible-world model is that it is inconsistent
with the second property. The notion of consequential closure is inherent in the
analysis of belief as compatibility with a set of possible worlds, because all logical
consequences of an agent’s beliefls are also true of each compatible world. Thus,
while possible-world models are good at predicting what consequences an agent
could possibly derive from his beliefs, they are not capable of predicting what an
agent actually believes, given that the agent may have resource or other limitations

impeding the derivation of the consequences of his beliefs.

Lest the reader think that the second property is not an important one in
modeling belief, we will briefly illustrate several types of derivational incompleteness
which agents may manifest in their beliefs, and argue that reasoning about such

incompleteness plays a critical role in intelligent behavior.

Resource Incompleteness. The chess scenario shows that an agent’s ability to
derive consequences of beliefs is limited by his computational resources. Although

individual inferences about the game tree (what the consequences of legal moves

4 - Chapter 1: Introduction

are) can be simple, the number of them required to figure out whether a player
has a forced initial win is astronomical and beyond the computational abilities of
any agent. A suitable model of belief must be able to represent resource-limited
situations, in which an agent possesses the inferential capability to derive some

consequence of his beliefs, but simply does not have the resources to do so.

Fundamental Logical Incompleteness. Agents often seem unable to draw simple
conclusions from their beliefs, even when given adequate computational resources.
To take an example from high-school algebra: a student who is confronted with the
equation z 4+ a = b and asked to solve for z will not be able to do so if he doesn’t
know the rule that subtracting equals from each side leaves the equation valid. 1t is
not that the student lacks sufficient mental resources to solve this problem; rather,
his rules of inference for dealing with equational theories are logically incomplete.
To contrast this type of incompleteness with the resource-limited incompleteness

described in the chess example, we call it fundamental logical incompleteness.

Fundamental logical incompleteness can arise when an agent must deal with
an unfamiliar world for which he lacks adequate inferential capabilities. It is im-
portant in many areas: for example, one can imagine an Al expert system acting as
a tutor, where it is crucial to characterize the inferential capabilities of the trainee.
This suggests.that a model of belief must be able to account for an agent’s inabil-
ity to derive some “easy” logical consequences of his beliefs, where by “easy” we
mean that the agent has available sufficient computational resources to perform the
derivation. This cannot be a characteristic of models of belief that use consequential

closure to model an agent’s reasoning about beliefs.

Relevance Incompleteness. Agents will typically have available many more beliefs
than those they need consider in solving any given problem. For example, if asked

whether Ronald Reagan were standing or sitting at this moment, most people would

Section 1.I: The Deduction Model 5

not hesitate (unless puzzled by the intent of the question) before responding “I don’t
know.” It seems obvious that we do not generate a large number of deductions in
trying to figure out whether Reagan’s body position is a consequence of some beliefs
we have; rather, we reach the conclusion that no beliefs are relevant to the question
at hand. Of course, having the ability to limit the beliefs that are considered means
that an agent can choose the wrong set, so that there may be some chain of inference
that leads to the desired conclusion, but the beliefs necessary to generate it were not
considered. Thus an agent’s derivational process may be incomplete because of the
beliefs he chooses to consider for a given problem; we call this type of incompleteness

relevance incompleteness.

Modeling relevance incompleteness is an impossibility if it is assumed that
the beliefs of agents are consequentially complete. An agent’s beliefs cannot be
partitioned into those that are either relevant or not to a given problem, and then
the consequences of the relevant set deduced; rather, all the consequences of beliefs

are believed.

1.1 The Deduction Model

In this thesis we introduce 2 new formal model of belief called the deduction
model. The beliefs of an agent are described by postulating a belief subsystem:
a set of statements in an internal language that represent the base beliefs of an
agent, together with processes for deriving consequences of the base set and relating
beliefs to other cognitive components of the agent. The internal language is a logical
language, and the derivation rules are deduction rules—hence the term deduction
model. Because the process of deriving the consequences of belief can be represented
in this model, it is possible to take into account computational limitations of belief

derivation.

As suggested by the chess scenario, the deduction model was developed in

an effort to define accurate models of the beliefs of Al robot planning systems.

6 Section 1.1: The Deduction Model

Because we designed and constructed them, we can actually look at the design
and answer questions about their internal “mental” structures. In effect, we are
using these planning systems as subjects in a discipline that might be appropriately
termed robot experimental psychology. The key difference between this study and
its human counterpart is that we actually have available the design, at a high level

of abstraction, of the robot’s internal information structures.

How well do Al planning systems conform to the deduction model? Such
planning systems always have an internal language that represents states of the
world, be the language frames or semantic nets or even a first-order logical lan-
guage. For these systems, reasoning about the world is an inferential process—that
is, they perform syntactic manipulations of the internal language to derive new
facts from an original set of beliefs. Further, from a logical point of view such
syntactic manipulations are often incomplete in exactly the sense we have claimed:
there are simple deductions that are never performed, even with adequate space
and time resources. The reasons for this can vary, but certainly an important one
is the following. A complete set of deduction rules for an internal language with the
expressive power of first-order logic is not decidable, so there is no computational
procedure that is guaranteed to answer the question of whether a symbol string is
a consequence of a set of beliefs in a finite amount of time. Even in those cases
which are decidable, complete decision procedures often are too expensive compu-
tationally. So-system-builders design belief deduction systems that are incomplete,
but which are computationally efficient for a particular domain. Many systems, for
example, employ limited reasoning about equality: from A = B and B = C they
may infer that A = C, but from f(z) = f(z—1) X z they won’t infer that f(4) = 24,

even with the appropriate number-theoretic axioms.

An important class of Al deduction systems is rule-based. The basic idea is
to embed domain-specific control information within the axioms themselves, rather
than in a complex control strategy. This information tells how the axioms should

be applied, so that a simple inference mechanism can be customized to perform

Section 1.1; 'The Deduction Model 7

efficiently in the intended domain. Resource-limited behavior is achieved by writing
the axioms in such a way that only a small number of the logically possible inferences

. are actually performed, but these are the most important ones for the domain in

question.

The deduction model was developed specifically with rule-based systems in
mind. In our formal investigation, we employ a mathematical abstraction of belief
subsystems, called deduction structures, which consist of a set of base sentences and
a set of deduction rules. A deduction structure has a very simple control strategy:
all its rules are applied whenever possible, generating every sanctioned inference.
Technically, they are closed with respect to deductions. Being deductively closed is
not the same as being consequentially closed if the deduction rules are not logically
complete. By using very weak deduction rules that are efficient for a given domain,
deduction structures exhibit resource-limited behavior, in a manner similar to rule-
based systems. An important technique here is to carry along the cost of derivation
as part of the information contained in a derived formula. The deduction rules can
check this cost, and limit their applicability when it exceeds a certain bound. We

use this technique, for example, in solving the Chess Problem in Section 6.1.

We might think of deduction structures as being an appropriate abstraction
for a kind of robot commonsense reasoning: when a robot agent knows a set of facts
about the world, there are a certain number of consequences that he should be able
to deduce without, as it were, thinking hard. For instance, if the agent believes
that the book is on the table in front of him, he should also be able to infer that it
is less than 100 miles away, that it cannot be denser than lead, and so on. These

are inferences that follow almost automatically from believing a certain fact.

It is important to note what representational problems of belief we are not
addressing with the belief subsystem abstraction. Three of these that are critical

areas for Al research are reasoning about uncertain information, belief revision in

8 Section 1.1: The Deduction Model

the face of contradictory information, and the integration of belief processing with

other parts of an agent’s cognitive makeup (desires, goals, plans, etc.}.

Because it represents beliefs in a computational, symbol-processing paradigm,
the deduction model is compatible with current philosophical theories of human
cognitive states, for example, Lycan’s [40] homuncular theory of belief, Fodor’s [13]
speculative psychology on the language of thought, and Moore and Hendrix’s [53]
account of belief sentence semantics. It should not be supposed, though, that the
deduction model gives a completely accurate account of human belief. Qur current
understanding of human cognitive processes is not even remotely capable of pro-
viding formal theories that describe the intricacies of human behavior. In terms of
belief, the phenomena of forgetting, reasoning based on uncertain information, and
the exact relationship between long- and short-term memory are but a few of the
problematic human behavioral features for which well-informed theories are lack-
ing. The deduction model is explicitly not an attempt to provide such theories, and
makes no pretense of being able to model behavior of this sort. However, the de-
duction belief model can capture what are perhaps the two most important aspects
of human belief and commonsense reasoning: the fact that people can draw con-
clusions from their beliefs, and that they do not necessarily derive all the logically

possible ones.

The importance of having a formal model of belief or other cognitive compo-
nents is often underestimated. Formal models have the advantage of concreteness:
it is possible to prove rigorously what properties the model has and what predictions
it makes. By starting with a formal model, we can outline clearly how the model
fits or does not fit its intended domain. Since all attempts at representing the world
involve abstraction of greater or lesser degree, having the abstraction “on the table”
and open to mathematical scrutiny seems to be the only way we can understand, in

a precise way, the nature of the abstraction. In defining the deduction model, we are

Section 1.2: Scope of the Thesis 9

careful to note what assumpticiis are made in the interests of technical feasibility,

and what consequences these have for its accuracy in the intended domain.

A formal model is also necessary if we want to be sure that the language we
are using to talk about belief actually does describe beliefs. For example, several
of the approaches to axiomatizing belief that we will criticize in Section 8 define a
predicate B or Bel or Believes, such that the intended meaning of Bel(a, p) is that
agent a believes proposition p. However, there is no way to know whether or not the
axioms that are given for the predicates actually describe their intended meaning;
indeed, it is often not even clear what the intended meaning of the predicate is—
exactly what aspects of our intuitive notion of belief are being described. And, as
Montague [49] has shown, a straightforward translation of our intuitive notions of
intensional concepts like belief into axiomatic logics of this sort can lead to outright
inconsistencies, in which there are no models of the belief predicate. By contrast,
in this paper we define a belief logic B that is provably sound and complete with
respect to the deduction model: every theorem of B is true of the deduction model,
and every true fact about the deduction model that can be stated in the language
of B is provable. We are thus assured that the logic is actually about beliefs as

portrayed by the model.

1.2 Scope of the Thesis

The concern with finding an appropriate abstraction of belief, and a repre-
sentationally adequate language for talking about it, is an enterprise that McCarthy
[45] has termed the epistemological part of building an intelligent system. A system
that is epistemologically adequate has enough knowledge in principle to perform the
task for which it was designed. The primary emphasis of this thesis is to develop an
epistemologically adequate formal model of belief for robot planning systems. The
first nine chapters are concerned with this topic: presenting the deduction model of

belief, and defining several logics that are sound and complete with respect to it.

10 Section 1.2: Scope of the Thesis

For a formalism to be useful in building a working AI system, it must, in
addition, be heuristically adequate, that is, there must be some way of efficiently
computing useful results from the formalism. As experience with Al systems has
shown, a heuristically adequate system can usually be built only when the charac-
teristics of a particular application domain are taken into account. As such, the
derivation of heuristic adequacy is beyond the scope of this thesis. Nevertheless, in
Chapters 10, 11, and 12 we present some proof methods for the belief logic that are
intuitively appealing and amenable to mechanization. It is hoped that these proof
methods form a foundation from which heuristically adequate systems for particular

applications could be constructed.

In brief, the thesis is concerned with deriving an epistemologically adequate
theory of belief for robot planners that can be refined to heuristic adequacy for

particular application domains.

There are also several other important goals of the thesis. One is to present
a theory of ignorance, or reasoning about non-knowledge, based on the idea that
the number of facts an agent uses to reason about a proposition is limited. Another
topic is the development of a theory of belief introspection, which posits that an
agent calls on his belief subsystem in a recursive manner to introspect about the

beliefs he has concerning his own beliefs.

A third goal is to explore proof methods that take seriously Weyhrauch’s [66]
concept of semantic attachment, a technique in which partial models of .a language
are realized as computations that can return the truthvalue of some statements of
the language. In terms of the deduction model of belief, the idea is to determine
the truth of statements about an agent’s beliefs by actually using a deduction pro-
cess to simulate the agent’s own belief deduction (as opposed to reasoning about
belief deduction in the logic). Although semantic attachment has many advocates,
relatively little experience has been accumulated as to the practical benefits of in-

corporating it into mechanized proof procedures.

Section 1.2: Scope of the Thesis 11

An interesting and important technical goal is the comparative study of
two different types of languages for representing the deduction model. There are
two different types of formal languages that have been used in the study of belief.
In the so-called syntactic approach, the language is a first-order metalanguage that
contains terms whose denotations are expressions in an object language. The object
language serves as the internal language of the deduction model, and predicates in
the metalanguage express facts about these sentences, such as their inclusion in the
base set of sentences. Thus, in a syntactic language, belief is expressed as a relation
between sentences in the internal language and the believer, a natural interpretation

in terms of the deduction model.

The other approach has been to use a modal language, in which there is an
operator on sentences of the language whose intended meaning is belief. Generally
the chosen semantics of the modal language has been the possible-world semantics.
The two methods have thus been hard to compare, since they have different semantic
bases. It is not clear whether or not the languages say the same thing about belief,
that is, whether there is a straightforward translation between the languages that

respects truthvalues.

Both approaches have their own merits. The syntactic language is more ex-
pressive, in that it allows full quantification over sentences of the object language
(the modal language just allows quantification over individuals). It also benefits
from a large and well-known body of proof theory and techniques, such as Her-
brand’s Theorem, that make mechanization easier. On the other hand, the modal
language is representationally more compact, and doesn’t suffer from the prolifera-
tion of confusing terms referring to object language expressions that the syntactic
approach is prone to. The deduction model admits both modal and syntactic rep-
resentations; therefore, a comparative study of the two approaches is undertaken in
this thesis, including the issues of their compatibility, expressiveness, and ease of

mechanization.

12 Section 1.2: Scope of the Thesis

There are several original contributions that this thesis makes to the field of
Al. The first is the development of the deduction model, a formal model of belief
for robot planning systems, that takes into account the resource limitations in the

derivation of beliefs.

A second contribution is the development of interpretations for two quite
different formal languages in terms of the deduction model. This allows a compar-
ison of the languages in terms of their expressiveness and utility. To the author’s
knowledge, it is the first time a reconciliation between the modal and syntactic
approach to representing facts about belief has been attempted. The major result
here is a correspondence property for the deduction model: in the limit of logically
complete belief deduction rules, the logic of the deduction model reduces to the
standard logics for the possible-world model of belief. The deduction model thus
dominates the possible-world model, in the sense that the latter is a special case of

the former.

There are several results that are important for mechanization of the proof
methods. The use of semantic attachment to simulate the belief deduction process
directly within the logic is, as far as the author knows, novel to this thesis. The
only similar development in proof theory is the tableau methods of Kripke [35]
for modal logics; we compare these in Chapter 3. A second result is a version of
Herbrand’s Theorem for a modal belief logic. Herbrand’s Theorem is particularly
important for mechanization, since it relates satisfiability of a set of sentences to
satisfiability of ground instances of those sentences; it is the basis of almost all
attempts at mechanizing first-order logic. This result is particularly surprising for
the modal language, since it has been sought after but unproved up to now (see,
for instance, the negative results of Haspel [17]. Farinas del Cerro [11] proves
a Herbrand Theorem for modal logic, but the language is restricted so that no

quantifiers appear in the scope of a modal operator).

Section 1.3: Outline of the Thesis 13

The theory of introspection based on the concept of a recursive call to the
belief subsystem appears to be a novel approach. Its advantages are that it is
intuitively appealing and has a computational setting. The logics of introspection
that are defined in Hintikka [21], Levesque [38] or Moore [52], for example, are simply
descriptive: they posit that an agent’s introspective reasoning should have certain
properties, without ever showing how these properties could arise in a computational

setting.

The theory of ignorance advanced in this thesis is a novel application of the
idea of circumscription of McCarthy [47]. A circumscription schema is the basis
of McCarthy’s work on solving the qualification problem: trying to formalize what
properties do not hold in a situation, given a formal description of those that do.
The originai work here involves applying the idea of circumscription to a set of
beliefs to say what an agent does not believe. Instead of a circumscription schema,
which is very hard to mechanize, circumscribing beliefs in the deduction model
leads to a simple axiomatization. Previous work on ignorance (see, for example,
Goad [14]} was based on the possible-world model, was not derived in terms of
the intuitively appealing idea of circumscribing beliefs, and does not extend to the

deduction model.

1.3 OQutline of the Thesis

Tlie plan of the thesis is as follows. In the next chapter we define the deduc-
tion model, aud discuss its formal characteristics in some detail. By examining Al
planning systems, we form an abstraction called a belief subsystem that represents
the part of an agent’s cognitive makeup responsible for beliefs. The concept of
a deduction structure is then developed as a mathematical formalization of helief

subsystems.

Chapter 3 introduces the modal logic family B as a means of stating facts

about the deduction model. It is a weak representational language in the sense

14 Section 1.3: Qutline of the Thesis

that it does not have any free variables inside the scope of modal operators (i.e., no
quantifying-in}, but it does allow the developement of the logic in its simplest form.
This and the previous chapter on the deduction model are the two most important
chapters to read. Following these, the model theory of B is developed in Chapter
4, uaing the mathematical framework of deduction structures. We give soundness

and completeness proofs for B here.

Several topics that are useful in applying B to problem domains are covered
in Chapter 5, including a theory of ignorance, a formalization of common belief,
and a simple theory of situations. Having developed this framework, we present
three problems in the r-epresenta,tion of beliefs in Chapter 6, and show how B can

solve them.

Chapter 7 develops the theory of introspection from the point of view of an
introspective machine, which is an agent’s view of his own beliefs in a computational
setting. Several families of logics, the BSn families, are defined to characterize
introspective belief subsystems with different properties. At this point the formalism
has been developed sufficiently to compare it to other approaches in Chapter 8, and
to analyze the differences between syntactic and modal languages for representing

belief models.

In Chapter 9 we continue to expand the representational power of the be-
lief logic, by taking up the development of a family qB whose language allows

quantifying-in constructs.

Having developed the analytic machinery of deductive belief logics, we turn
our attention to practical mechanical theorem-proving methods. These methods

are

1. A modified Davis-Putnam decision procedure for unquantified
B.

Section 1.3: OQutline of the Thesis 15

2. Resolution methods for qB with function terms.
3. A rule-based system for qB with function terms.

In Chapter 10 we generalize the propositional decision procedure of Davis and Put-
nam [9] to the logic family B. As a practical application, we solve the hard form of
the Wise Man Puzzle (i.e., the proofs of ignorance are included) in Appendix A. To

the author’s knowledge, this is the first automatic solution to this puzzle.

In Chapter 11 we develop the necessary semantic machinery of semantic trees
for qB, and prove an analog to Herbrand’s Theorem of first-order logic. Building
on these results, we present a complete resolution method for qB in Chapter 12.
Finally, we develop incomplete resolution strategies that are computationally effi-

cient, namely unit resolution and rule-based systems.

2. The Deduction Model of Belief

The strategy we pursue in constructing a model of belief is to examine the
way that typical Al robot planning systems (STRIPS and NOAH [54], WARPLAN
[65], KAMP [1], etc.] represent and reason about the world. This leads to the
identification of an abstract belief subsystem as the internal structure responsible
for the beliefs of these agents. The characteristics of belief subsystems can be

summarized briefly:

1. A belief subsystem contains a list of sentences in some internal
(“mental”) language, the base beliefs;

2. Agents can infer consequences of their beliefs by syntactic ma-
nipulation of the sentences of the belief subsystem;

3. Thederivation of consequences of beliefs is incomplete, because
of limitations of the inference process.

Having identified a belief subsystem as that part of an agent responsible for
beliefs, our next task is to define a formal mathematical structure that models it
accurately. The decisions to be made here involve particular choices for modeling
the various components of a belief subsystem: What does the internal language look
like? What kind of inference process actually derives consequences of the base set?
and so on. The formal mathematical object we construct according to these criteria
is called a deduction structure. Its main components are a set of sentences in some
logical language (corresponding to the base set of a belief subsystem) and a set of

deduction rules (corresponding to the belief inference rules), which may be logically

18 Section 2.1: Planning and Beliefs: the Belief Subsystem Abstraction

incomplete. Because we choose to model belief subsystems in terms of logical (but

perhaps incomplete) deduction, we call it the deduction model of belief.

2.1 Planning and Beliefs: the Beliel Subsystem Abstraction

A robot planning system must represent knowledge about the world in order
to plan actions that affect the world. Of course it is not possible to represent all
the complexity of the real world, so the planning system uses some abstraction of
properties of the real world that are important for its task; e.g., it might assume
that there are objects that can be stacked on top of one another in simple ways (the
blocks world domain). The state of the abstract world at any particular point in

time has been called a situation in the AI literature.

In general, the planning system will have only incomplete knowledge of a
situation. For instance, if it is equipped with visual sensors, it may be able to
see only some of the objects in the world. What this means is that the system
must represent and reason about partial descriptions of situations. The process of
deriving beliefs is a syntactic operation that takes as input sentences of the formal
language, and produces new sentences as output. Let us call any new sentences
derived by inferences derived sentences, and the process of deriving them belief

derivation.

It is helpful to view the representation and deduction of facts about the
world as a separate subsystem within the planning system; we call it the belief
subsystem. In its simplest, most abstract form, the belief subsystem comprises a
list of sentences about a situation, together with a deduction process for deriving
consequences of these sentences. It is integrated with other processes in the plapning
system, especially the plan derivation process that searches for sequences of actions
to achieve a given goal. In a highly schematic form, Figure 2.1 sketches the belief
subsystem and its interaction with other processes of the planning system. The

belief system is composed of the base sentences, together with the belief derivation

Section 2.1: Planning and Beliefs: the Belief Subsystem Abstraction 19

Belief Subsystem

Deduction
Rules
ontrol +— Queries
Strategy e Answers
Base
Beliefs

Figure 2.1 Schematic of a Belief Subsystem

process. Belief derivation itself can be decomposed into a set of deduction rules and
a control strategy that determines how the deduction rules are to be applied and

where their outputs go when requests are made to the belief subsystem.

There are two types of requests that result in some action in the belief
subsystem. One is to add or delete sentences in the base set; this happens, for
example, when the plan derivation process decides which sentences hold in a new
situation. Belief updating and revision is a complicated research problem in its own
right, and we do not address it here (see Doyle [10] for some related Al research).
The second type of request is a query as to whether a sentence is a belief or not.
This qﬁery causes the control strategy to try to prove, using the deduction rules,
that the sentence is a consequence of the base set. It is this process of belief querying

that we model in this paper. We now briefly examine some of its properties.

If we envision a belief subsystem as part of a robot agent that must inter-
act with a changing environment, then the amount of time the agent can spend
computing consequences of its beliefs is strictly limited: like human agents, robot

agents will often have to act quickly to respond to a situation, without the luxury

20 Section 2.1: Planning and Beliefs: the Belief Subsystem Abstraction

of unlimited resources for deriving a plan. Thus an important property of the be-
lief query process is that it must always terminate in a finite (and usually small)

amount of time.

What kinds of queries can be presented to the belief subsystem, and what
is the nature of answers to these queries? There are two general forms of querying
that have been used in Al systems, characterized by Chang and Lee [5] as Class
A and B questions. Class A questions involve a simple yes or no answer, e.g., “Is
it raining outside?” For this type of question, a query in the form of a statement
about the world is presented to the belief subsystem, and the subsystem tries to

derive it on the basis of its base set. If it can, it answers yes; otherwise no.

Class B questions ask for information about individuals or conditions that
satisfy an incomplete statement. For example, “Who knows whether it is raining or
not?” is a Class B question, because it asks for an individual or set of individuals
that satisfy a certain property. The answers to Class B questions can vary in their
nature, depending on the particular circumstances involved. In some cases, an
appropriate reply to the foregoing question is the name of an individual (John);
in others, it might be a description of a single individual or class of individuals

(everyone who has been outside), or even a disjunctive reply (either John or Kim).

Normally we will not be concerned with the distinction between these or
any other types of queries that can be asked of a belief subsystem. The deduction
model can accomodate any type of belief query as long as the process of belief
derivation satisfies very general criteria, which are detailed in the next section. The
only exception is with the specialized resolution proof methods which we develop in
Chapter 12; to apply these techniques, the belief derivation process must be capable

of answering a certain type of Class B question.

The foregoing description of the operation of a belief subsystem is meant to

convey the idea that, in most formal planning systems, there is a tight interaction

Section 2.2: A Formal Model of Belief 21

between belief subsystems and planning. Different systems may deviate from the
described pattern to a greater or lesser extent. In some systems, the representation
of facts may be so limited, and that of actions so explicit, as to almost obviate
the need for belief deduction per se (as in some. versions of STRIPS). In others,
deduction may be used to calculate all the effects of an action by expanding the
representation to include situations as objects (as in WARPLAN). It is hard to make
a clean separation here between deductions performed for the purpose of deriving
consequences of beliefs and those that establish the initial set of facts about a new
sitnation. However, it is still conceptually useful to regard the beli.ef subsystem as
a separate structure and belief derivation as a separate process within the planning

system.

2.2 A Formal Model of Belief

The formal mathematical object we use to model belief subsystems is called
a deduction structure. It is a tuple consisting of two sets, and will be written as
(B, R). The set B is a set of sentences in some logical language L. It corresponds
to the base set of a belief subsystem, and will be referred to as the base sentences
of the deduction structure. About the only condition we require of L is that it be a
logical language=. Logical languages are distinguished by having a constructable set
of syntactic objects, the sentences of the language, together with an interpretation
method (a means of telling whether a sentence is true or false of a given state of

affairs).

The set R is a set of deduction rules that operate on sentences of L. Its
obvious correspondent in a belief subsystem is the rules of belief inference. We will
leave unspecified the exact form of the deduction rules R, but we do insist that
they operate in the normal manner of deduction rules: there must be some method
of applying the rules to derive conclusion sentences from premise sentences. If we

think in terms of Hilbert systems (as defined in Kleene [28]), R would be a set

22 Section 2.2: A Formal Model of Belief

of logical axioms (zero-premise rules) together with modus ponens (a two-premise
rule). A sentence p would be derivable from the base sentences B = {by,bs,...} if
there were a Hilbert proof of (by Abz A...) D p, using the logical axioms and modus
ponens. Sentences that can be derived from the base sentences are called derivable

sentences.

A belief subsystem defines an agent’s beliefs by the action of the deduction
r::les on the base set, under the guidance of the control strategy. Deduction struc-
tures model beliefs by defining a belief set, symbolized by bel({B, R}, c), where ¢
is a control strategy function. The belief set will contain the base sentences B,
together with some of the derivable sentences. Just which derived sentences are
included depends on how accurately we want to model the control strategy s of the
corresponding belief subsystem. If the control strategy is intricate, the definition
of the function bel could be complex, difficult to axiomatize, and computationally
expensive to reason about. For this and several other reasons we make the im-
portant assumption that the belief set of a deduction structure is closed under the
deductions allowed by R: all derivable sentences are included in bel. One of the
immedizte technical gains of this assumption is that we can eliminate the need for
a complex control strategy counterpart in deduction structures in favor of a simple
closure condition on the belief set; hence we write bel({B, R)), dropping the control
strategy parameter. However, the correctness of the model may be impaired; we
discuss this issue at some length below, and claim that deduction structures can
still, in man)-,r cases, accurately capture the behavior of a belief subsystem’s control
strategy. It is important to note that deductive closure does not entail consequential
closure: for example, a set of sentences closed under logically incomplete deduction

rules need not contain all logical consequences of the set.

It is convenient to define an operator that symbolizes the process of belief
derivation. We write I" B3 p if p is derivable from the set of premises I' using the
rules R. The belief set can then be defined as bel({B, R}) = {p|B Bz p}. The belief

Section 2.2: A PFormal Model of Belief 23

derivation operator provides a concise method of summarizing various assumptions

about belief derivation. The closure property, for example, can be stated as

HT By 7 and p,Shy) g, then IS By q,

where I and X are sets of sentences.

The belief derivation operator symbolizes a process, one that we assume we
can actually run as a computation. The fact that belief subsystems always return
an answer to a query in a finite amount of time implies that belief derivation is
decidable, and thus that the process always terminates. We will not make this
assumption in the thesis, but rather develop the logic of deduction structures in a
more general framework in which belief derivation is only semidecidable, so that

the process may not terminate for all inputs.

Finally, we single out certain sentences of the deduction structure for special
treatment, namely those that themselves refer to the beliefs of agents. One of
the key tests of a belief model! is its ability to handle nested beliefs by assuming
that agents use the model in representing other agents’ beliefs; a belief model that
has this characteristic is said to have the recursion property. In terms of deduction
structures, the recursion property implies that the sentences of a deduction structure
that are about beliefs should have another deduction structure as their intended

interpretation.

At this point it is worthwhile to summarize the important properties of

deduction structures and their associated belief sets.

LANGUAGE PROPERTY. The language of a deduction structure is logical

language.

24 Section 2.2: A Formal Model of Belief

DEDUCTION PROPERTY. The rules of a deduction structure are logical de-

duction rules. These rules are sound, effectively computable, and have a

finite number of premises.

CLOSURE PROPERTY. The belief set of a deduction structure is the least set

that includes the base sentences and is closed under deductions.

RECURSION PROPERTY. The intended model of sentences involving belief is

the belief set of a deduction structure.

We now discuss each of these characteristics of the model in some detail.
Readers who are not interested in the fine points of the model may wish to skip the

rest of this chapter.

2.2.1 Language Property

About the only restriction we place on the language L of deduction structures
is that sentences of the language have a well-defined model-theoretic semantics.
This requirement seems absolutely necessary, for example, if we are going to talk
about the beliefs of an agent being frue of the actual world, or, as we will want to
do in discussing the rationality of agents, judge the soundness of belief deduction
rules. Such concepts make no sense in the absence of an interpretation method—a
systematic way of interpreting the constructions of the language in terms of a model.
Note that the interpretation method is not something that the agent carries around
in his head; as far as the agent is concerned, a belief subsystem is just a collection of
sentences, and computational processes manipulate the sentences themselves, and
not their meanings. We simply cannot put the referent of “Cicero” inside our heads,
even if he were alive. But the attribution of semantics to sentences is necessary if

an outside observer is to analyze the nature of an agent’s beliefs.

Section 2.2: A Formal Model of Belief 25

How well do actual robot belief subsystems fit in with the assumption of a
logical language of belief? Al systems use a variety of representational technolo-
.gies; chief among these are frames, scripts, semantic nets, and the many refine-
ments of first-order logic (FOL), including PROLOG and the rule-based logics of
p-PLANNER, CONNIVER, QA4, and the like. The representations that fall into
the latter category inherit their semantics from FOL, despite many differences in
the syntactic form of their expressions. But what can we say about the first three?
In surface form they certainly don’t look anything like conventional mathematical
logics; and their designers often have not provided anything but an informal idea
of what the meanings of expressions in the language are. When, after all, is a pair
of nodes connected by a directed arc true of the world? As Hayes [18] has force-
fully argued, the lack of a model-theoretic semantics is a big drawback for these
langauges. Fortunately, on further examination, it is often possible to provide such
a semantics, usually by translating the representation into a first-order language.
(See Woods [68] and Schubert [62] for a reconstruction of semantic nets in FOL

terms, and Brachman [4] for a similar analysis of frames).

In the human sphere, at least one philosopher of mind has argued that in-
ternal representations that count as beliefs must have a model-theoretic semantics
(see Fodor {13]}). However, there almost certainly is a lot more to human belief than
can be adequately handled within the framework of a logical language. For exam-
ple, the question of membership in the belief set of a deduction structure is strictly
bimodal: a sentence is either a member of the belief set of a deduction structure,
or it isn’t. If it is, then the assumed interpretation is that the agent believes that
sentence to be true of the world. Deduction structures thus don’t directly support
the notion of uncertain beliefs, as they might if fuzzy or uncertain membership in

the belief set were an inherent part of their structure.l

! However, uncertain beliefs could always be introduced into deduction structures in an indirect
manner by letting L contain statements about uncertainty, e.g., statements of the form P is true
with probability 1/2.

26 Section 2.2: A Formal Model of Belief

it is often the case that we will want to fix the language of deduction struc-
tures in order to study their properties at a finer level-of detail, e.g., when looking
at the behavior of nested beliefs in general, or when giving the particulars of the
solution to a representational problem. It is convenient to think of the language as
being a parameter of the formal model. For every logical language L, there are a

set of deduction structures D(L) whose base sets are sentences of the language L.

2.2.2 Deduction Property

Rules for deduction structures are rules of inference with the following properties:

(Effectiveness) The rule is an effectively computable function of sen-
tences of L.

(Provinciality) The number of premises is fixed and finite.

(Soundness) The conclusion is sound with respect to the semantics '
of L.

These restrictions are those normally associated with deduction rules for classi-
cal logic, although strictly speaking deduction rules need not be sound, if one is
interested strictly in the proof-theoretic properties of a logic, without regard to

semantics.

The fact that belief deduction rules are general effectively computable func-
tions means that they can be very complicated indeed. Mathematicians have been
interested in iogics with simple deduction rules (such as Hilbert systems) because
it 1s easy to prove properties about the proof structure of such systems. However,
for the purpose of deriving proof methods for common-sense reasoning in Al it is
often better to sacrifice simplicity for computational efficiency. Robinson’s resolu-
tion rule [59], which employs a matching process called unification, is an example of
a complicated rule that has found widespread employment in Al theorem-proving
methods. Another important technique is Weyhrauch’s semantic attachment [66],

a general framework for viewing computation as deduction.

Section 2.2: A Formal Model of Belief 27

We call an inference rule provincial if the number of its input sentences
is fixed and finite; deduction rules are always provincial. We thus do not allow
inferences about beliefs that take an infinite number of premises. For example,
Carnap’s rule: if for every individual a: F(a} is a theorem, then Vz.F(z) is a
theorem, is not a valid rule of belief deduction.? Provincial inference rules have the
following important property: if a is 2 consequence of a set of sentences S by the
rule, then it is also a consequence of any larger set §' O S. To see that this must be
so, consider that, if @ can be derived by the application of provincial rules on the
set of sentences S, and S’ contains S, then the same derivation can be performed
using S’. Rules that adhere to this property are called monotonic. Technically,
monotonicity is convenient because it means we can reason about what an agent
believes based on partial knowledge of his beliefs. A derivation made on the basis

of a subset of his beliefs will always be valid, no matter what the full set of beliefs.?

Deduction rules for belief subsystems must also be sound. Soundness is a
property of deductions defined in relation to the interpretations of the sentences
they manipulate. A sound deduction rule is one for which, if the premises are true
in an interpretation, then the conclusion will be also (see Kleene [28]). Informally,

one would say that sound deduction rules never deduce false conclusions from true

2} am indebted to David Israel for pointing out this example.

3 McCarthy (private communication) makes the point that there can be nonmenotonic rules that
have a finite number of premises, if the language itself contains only a finite number of sentences.
For example, let L contain the two predicates P and @ and the boolean opertors - and v, but forbid
all expressions with more than two boolean operators. There are only 38 different sentenrces in the
language. We can define a nonmonotonic deduction rule NM on a set of sentences S as follows:
return P if =P is not among 5. Because S is never larger than 38, the number of premises of NM
is always less than 38. NM is nonmonotonic because if it is applied to an S not containing =P, it
deduces P; but if $' = {=P} U S, NM will not deduce P.

The nonmonotonic nature of NM within a given deduction structure depends on restricting its
application to the complete base set: for example, if it is applied to the subset S even when the base
set 13 5, it will still deduce P. We argue that, because of this, NM is not a provincial deduction
rule as we define it. A provincial deduction rule must have a fixed and finite set of premises; beyond
that, there is no restriction on how the rule may be applied to a given base set of sentences. If it
deduces p from a finite subset of sentences S of the base set, then it must always do so, no matter
what other sentences the base set contains.

a8 Section 2.2: A Formal Model of Belief

premises. Modus ponens is an example of a sound deduction rule: if p and p> ¢

are true, then ¢ must also be true.

While the sound deduction rules of deduction structures can cover a large
part of the process of belief derivation, there are other types of inferences that may

be needed to form a useful model of belief. Some of these are
Belief revision: the beliefs of an agent are updated to be

consistent with new information (e.g., Doyle
[10]).

Default reasoning: an agent “jumps to a conclusion” about the
way the world is (e.g., McCarthy [47], Re-
iter [58]). :

Introspectivé reasoning: an agent comes to a conclusion about the
world based on his knowledge of his own
beliefs {e.g., Collins et al. [7], Moore [52]).

Of these three, we have already argued that the first, belief revision, is not
a process that interacts with belief querying, and so we do not attempt to deal
with it in the deduction model. However, the other two play a useful role in human
belief inference, and deserve closer attention. We will call these two types of rules
extended inference rules.! Let us examine some examples of extended inferences,

and see why they cannot be couched directly in terms of deduction rules.

Suppose an agent knows that, in the typical case, birds have the ability to
fly. A default rule of this sort might be informally stated as:

Rule F. Ifzisa bird, and nothing that is known about z contradicts
it, assume that z can fly.

% There is a deliberate borrowing from Winograd’'s [67] terminology here, However, Winograd
actually uses the term “extended inference modes,” and makes it clear that he considers the defining
quality of these inferences to be the lack of a standard semantics. By contrast, the extended inference
rules we develop for circumscriptive ignorance and introspection in Chapter 7 have a perfectly well-
defined semantics.

Section 2.2: A Formal Model of Belief 29

It is easy to show that Rule F is a nonmonotonic deduction rule. Suppose
a base set 5 of sentences about Tweety is simply that Tweety is a bird; then by
Rule F, it can be inferred that Tweety can fly. Now form the base set S’ by adding
the additional sentences that Tweety is an ostrich, and that ostriches can’t fly. By
simple deductions, the fact that Tweety can’t fly can be derived; thus Rule F no
longer applies, and even though S C §’, there are sentences that can be inferred

from S that can’t be inferred from S'.

As we have argued, all nonmonotonic inference rules must be nonprovincial.
A default rule like Rule F specifies that something must be consistent with a set
oi' sentences before it can be applied. This is what makes it nonprovincial: the
premises of the inference rule are not a fixed, finite set. Default rules are also
unsound, since there is an interpretation for S in which Tweety can’t fly, yet, by
default, it is assumed that he can. So default rules don’t fit two restrictions that

classical deduction rules obey.

A similar pattern emerges when we examine introspective inferences. These
are conclusions that can be drawn on the basis of an agent’s knowledge about his
own beliefs. Consider the following line of reasoning by a feminist who has not
studied much United States history:

Were there any female presidents? I certainly can’t name all the presidents.

On the other hand, I don’t know of any female presidents, and if there had
been any, I would have known it; therefore there mustn’t have been any.

This agent makes an inference based on the state of her own beliefs. The
lack of a particular sentence in her belief subsystem leads to the derivation of
another belief. Introspective reasoning of this sort has been studied by Collins
et al. 7], who find it an important mode of reasoning for human subjects. It is
obviously nonprovincial, because it depends on the state of the belief subsystem as
a whole. On the other hand, as Moore [52] points out, introspective reasoning is

distinguished from default reasoning in that it is sound: if the beliefs of an agent

30 ' Section 2.2: A Formal Mode] of Belief

in its own information-gathering abilities are correct, then the inferences he makes
about his lack of knowledge are perfectly justified.® By contrast, the use of a default

rule always implies that an agent jumps to a conclusion that may not be correct.

The failure of extended inference rules to obey provinciality (and soundness)
does not, by itself, preclude their use in deduction structures, although it does
mean that their behavior would be different from standard deduction rules (e.g.,
they would be nonmonotonic). However, whenever we try to add such rules to
deduction structures, it turns out that they are also not effectively computable in
the general case. That this should occur is not surprising. In the statement of
typical default or introspective rules, there is a clause that refers to the state of an
agent’s beliefs; in Rule F above, this was the part that stated and nothing that is
known about r contradicts it If we take a rule that refers to the process of
belief derjvation, like-Rule F, and add it to the rules for a deduction structure, then
the rule becomes self-referential, since it refers to the process of belief deduction in
which it is embedded. As Reiter [58] has shown, the problem of deciding when it is
permissible to apply a default rule of this sort is insoluble. This applies to systems
like the default logic of Reiter [58] as well as the nonomonotic logics of McDermott
and Doyle {48]. So we must agree with Israel [24] in his critique of nonomonotonic
and default logics, that the intermixture of deduction and extended inference rules

is ill-considered.

There is another way to view extended inference rules, namely, as operations
on a theory considered as a syntactic whole. McCarthy [47] exploits this approach to
formalize a certain type of useful default inference, which he calls circumscription.
Because there is no self-reference involved in the circumscription rule (it does not
use the theory it generates as input), it need not suffer from the problem of non-

effectiveness inherent in the embedded logics discussed above.

® Moore [52] uses the term autoepistemic reasoning to indicate an inference made on the basis of
sell-knowledge.

Section 2.2: A Formal Model of Belief 31

Extended inference rules, when viewed as operations on theories as a whole,
are compatible with the deduction model. In this approach, a deduction structure
continues to function in the standard way, generating a belief set from the base
sentences with deduction rules. Extended inference rules can use the deduction
structure as input, for example to show that a certain statement is not in the belief
set. In Chapter 5 we develop a theory of circumscriptive ignorance by defining an
extended inference rule in analogy to McCarthy’s rule; the theory of introspection

of Chapter 7 also has extended inference rules for reasoning about self-beliefs.

To sum up: deduction structures are restricted to using deduction rules,
which are provincial, sound, and effectively computable. Several interesting types
of reasoning, such as reasoning about defaults or self-beliefs, cannot be modeled
directly as deduction rules over sentences. However, they can be incorporated into
the deduction model if the input to the rules is taken to be the deduction structure

as a whole.

Closure Property. One of the key properties of belief subsystems that we wish to
model is the incompleteness of deriving the consequences of the base set of beliefs.
We have identified three sources of incompleteness in belief subsystems: an agent’s
belief ipference rules may be too weak from a logical standpoint, or he may decide
that some beliefs aren’t relevant to a query, or his control strategy may perform
only a subset of the derivations possible when confronted with resource limitations.
All these methods are used by Al systems confronted with planning tasks under
strict resource bounds. For several reasons, both conceptual and technical, we do
not model incomplete control strategies directly in the deduction model. Instead,
we make the assumption that the belief set of a deduction structure is closed under
derivations: every sentence that can be derived from a set of sentences B by the
rules R is in the belief set of (B, R).

32 Section 2.2: A Formal Model of Belief

The closure property is an extremely important one, and we should examine
its repercussions closely. An immediate point to make is that derivational closure
is not the same as consequential closure. The latter refers to a property of sets of
sentences based on their semantics: every logical consequence of the set is also a
member of the set. The former refers to the syntactic process of derivability; and if
the rules R are not logically complete, then a set of sentences that is derivationally

closed under R need not be consequentially closed.

Probably the chief motivation for requiring derivational closure is that it sim-
plifies the technical task of formalizing the deduction model. Consider the problem
of formalizing a belief subsystem that has a complex control strategy guiding its
derivations. To do this correctly, one must write axioms that describe the agendas,
proof trees, and other data structures used by the control strategy, and how the
control strategy guides deduction rules operating on these structures. Reasoning
about the proof process involves making inferences using these axioms to simulate
the process, a highly inefficient procedure. By contrast, the assumption of deriva-
tional closure leads to a simple formalization of belief subsystems that incorporates

the belief deduction process in a direct way

Of course, it might be argued that, by assuming derivational closure, one
cannot hope to model complex Al systems in which resource bounds play a central
role in the proof process; for example,' deduction structures would not be a correct
formalization of planning systems that must operate under time constraints. How-
ever, on closer examination it can be shown that this criticism is almost entirely
unfounded: the belief subsystems of present Al systems, even those with resource
bounds, can in many instances be accurately modeled by deduction structures closed

under derivations.

The first point to note in this regard is that many resource-limited proof

processes, while they superficially seem to generate theories that are not closed

Section 2.2: A Formal Model of Belief 33

with respect to derivations, are in fact isomorphic to a proof process that does. We
need to make a distinction here between local and global effort bounds on a proof
process. The distinction is quite simple. A local effort bound is a bound on the
cost of a single derivation. For example, suppose the sentences A and B are in the
the base set of a deduction structure, that C can be deduced from A and B by the
rule Ry, and that D can be deduced from C by Ry. A derivation tree for D is:

A B
Rlz\d/
Rg:l
D

A local effort bound is a function on derivation trees. One of the simplest local
bounds is to assign a cost to each derivation in a tree; if the cost of Ry plus the cost
of Rs is greater than some threshold, the derivation tree above is not accepted as a

proof of D.

By contrast, a global effort bound is a function over ail the derivation trees
produced by a proof process. Using a global bound, the derivation of D above
might be accepted if it were produced early in the proof process, but not after other

derivatjons have contributed to the global cost of the proof process.

One advantage of local over global effort bounds is conceptual clarity and
predictability. Under a global bound, there is some control strategy that guides
the proof process, making decisions to perform or not to perform deductions. The
behavior of such a system is hard to predict. Theoretically there may be a derivation
of a sentence, but the control strategy in a particular case decides not to derive it,
because it tried other derivations first. Locally bounded systems, on the other hand,
behave more dependably. They are guaranteed to arrive at all derivations that

satisfy the local bound. Many theorem-proving strategies developed for Al actually

34 Section 2.2: A Formal Model of Belief

use local bounds as a resource limitation; a good example is level-saturation as a

resolution strategy (see Chang and Lee [5]).

Another important property of locally bounded proof processes is that they
are always isomorphic to some derivationally complete proof process. We consider
a simple example here. Suppose an agent uses modus ponens as his deduction rule,
and has a control strategy in which only derivations using fewer than & applications
of this rule are computed; this is a local effort bound. To model this situation with
a derivationally closed deduction structure, consider transforming the base set so
that each sentence has an extra conjunct tacked onto it, the predicate DD(0) (DD
stands for “derivation depth”). Instead of modus ponens, the deduction structure

has the following modified rule:

DD(n) A o DD(m) A (e 2)
DD(n+m+1)Aj ’

MP2 . n+m<k

MP?2 is sound and effectively computable, so it is a valid rule for a deduction
structure. The closure of the base set of sentences of the structure under MP2 will
be the same (modulo the DD predicate) as the set of sentences deduced by the

nonclosed control strategy of the agent.

Finally, we note that many Al theorem-proving systems for commonsense
reasoning embed their control knowledge in the sentences of the language, in a
manner similar to that of rule MP2. These systems typically define new symbols
for logical implication that have the same semantics as the normal implication sign
(2), but are treated differently by the proof process. For example, one such sign
(P — @) would be interpreted as meaning if P is ever derived, then derive @
also. It would never be used to infer =P from —@, although such an inference
would be sound. By embedding control information in the sentences themselves,
it is possible to use a uniform control strategy that is derivationally closed, where

the proof process is gﬁided by the syntactic form of the assertions made to the

Section 2.2: A Formal Model of Belief 35

system. Systems of this sort, often called rule-based [see Nilsson [54]), make the
same derivational closure assumption as deduction structures, and rely on the form

- of the axioms to achieve computational efficiency.

So, in retrospect, the decision to make belief sets closed under derivation is
not a severe limitation on the accuracy of the Deduction Model. From a modeling
viewpoint, the concept of “belief” is always going to be complicated by the intro-
duction of control strategy issues. For example, it makes a difference to the control
strategy as to whether a sentence is a member of the base set, or obtained at some
point in a derivation. One cannot simply say, “Agent S believes P,” because such a
statement doesn’t give enough information about P to be useful. If P is derived at
the very limit of deductive resources, then nothing will follow from it; if it is a base
sentence, then it might have significant consequences. By making the assumption of
derivational closure, we have narrowed the scope of control strategies to those that
use local effort bounds. This compromise allows us to arrive at a useful formaliza-
tion of the deduction model, while still accurately portraying the most significant

class of Al theorem-proving strategies for commonsense reasoning.

2.2.3 Recursion Property

There is one final topic to discuss about how deduction structures model
belief subsystems: what predictions does the model make about nested beliefs, that
is, beliefs about beliefs? If belief subsystems adhere to the recursion property, then
agents view other agents as having belief subsystems similar to their own. This still
leaves a large amount of flexibility in representing nested beliefs. For example, John
might believe that Sue’s internal language is Ly and that she has a set of derivational
rules Ry, whereas Kim’s internal language is Lo and her derivational rules are Rs.
In addition, John might believe that Sue believes that Kim’s internal language is
L3, and her rules are R3. We call the description of a belief subsystem at some

level of nesting a view, and symbolize it with the Greek letter v. Since the formal

36 Section 2.2: A Formal Model of Belief

objects of the deduction model are deduction structures, these will be indexed by
views when appropriate. For example, the view v = John, Sue, Kim is Kim’s belief
subsystem as John believes that Sue sees it; a deduction structure formalizing this
belief subsystem would be djopy sue kim- The actual world is represented by the
empty view, v = @. Singleton views (the actual belief subsystems of each agent)
can be indicated by using lowercase Roman indices, e.g., 1 = Kim is Kim’s belief

subsystem (the deduction structure dgim)-

Obviously, some fairly complicated and confusing situations might be de-
scribed, with agents believing that other agents have belief subsystems of varying
capabilities. Some of these scenarios would be useful in representing situations that
are of interest to Al systems, e.g., an expert system tutoring a novice in some do-
main would need a representation of the novice’s deductive capabilities that would
initially be less powerful and complete than its own, and could be modified as the

novice learned about the domain.

The recursion property does not imply that an agent’s knowledge of another
agent’s beliefs is given by a deduction structure representing the latter’s complete
set of beliefs; rather, just as the outside observer uses a language to represent
partial information about agents’ beliefs, so an agent uses sentences of his internal
language L to refer to the beliefs of agents. A standard construct is to have a belief
operator in L: an operator whose arguments are an agent S and a sentence P,
and whose intended meaning is that S believes P. The recursion property simply
means that the belief operator must have a deduction structure as its interpretation.
Deduction rules that apply to belief operators will be judged sound if they respect
this interpretation. For example, suppose a deduction structure d has a rule stating
that, from the premise sentences “John believes p” and “John believes p o g,” the
sentence “John believes ¢” can be concluded. This is a sound rule of d if modus
ponens is believed to be a rule of the deduction structure modeling John’s belief
subsystem, since the presence of p and p > ¢ in a deduction structure with modus

ponens means that ¢ will be derived.

Section 2.2: A Formal Model of Belief 37

Several simplifying assumptions are implicit in the use of deduction struc-
tures to model the nested views of belief subsystems. The language L contains a
belief operator that talks about membership in a belief set (its intended interpre-
tation), and so L can describe what sentences are contained in an agent’s belief
set. However, there is no provision in L for talking about the deduction rules an
agent uses. Instead, these nested belief rules are implicitly specified by the rules
that manipulate sentences with belief operators. Consider the example from the
previous paragraph. Let us suppose that we are modeling Sue’s belief subsystem
with the deduction structure d. Because Sue believes that John uses modus ponens,
a sound rule of inference for d would be the one that was stated above, viz., from
the premise sentences “John believes p” and “John believes p > ¢” the sentence
“John believes ¢” could be concluded. All of the rules that Sue believes John uses
are modeled in this way. Similarly, if in Sue’s opinion John believes that Kim uses
a certain rule, then this will be reflected in a rule of John’s deduction structure,
which in turn will be modeled by a rule in d. The deduction model thus assumes
that the rules for each view, though they may be different, are a fixed parameter of
the model. We introduce the function p{r) to specify deduction rule sets for each
view v; then for each function p and each language L, there is a set of deduction

structures D{L, p) that formalize the deduction model.

The assumption of deduction rules as a fixed parameter of the model does
not seem to be appropriate if we want to model changes in the rules as well as in
the base set of beliefs. However, there is a way to overcome this difficulty. Just
as we saw that we could model a control strategy that used local effort bounds by
using more complicated deduction rules, we can model changing deduction rules by
complicating the form of the internal language. Consider the high-school algebra
example that was introduced on page 4. We have several choices of how we are to
represent the algebraic rule: subtracting equals from each side of an equation leaves
the truth of the equation unchanged. One way would be to have a deduction rule
schema that says from £ = vy, infer t—a = y—a. Another equivalent implementation

would be to have a general deduction rule such as modus ponens, and a proper axiom

38 Section 2.2: A Formal Model of Belief

cf the form (z = y) > (x — a = y — a). By using proper axioms of this sort as belief
sentences, we can model the changing state of an apprentice’s knowledge of algebra.
As we have seen, this is precisely the technique that Al rule-based systems exploit,

embedding control information for deduction in the axioms themselves.

A final simplification, which is not inherent to the deduction model but which
we introduce solely on the basis of technical convenience for this thesis, is that all
deduction structures in all views use the same language L. There are situations
where we might want to relax this restriction, but for the purposes of this thesis it

makes the formalization of the deduction model less complex.

3. The Logic Family s

) We now define a family of logics B(L, p) for stating facts and reasoning about
deduction structures. This family is parameterized in the same way as deduction
structures, namely by an agents’ language L and an ensemble of deduction structure
rules p. Each logic of the family is an axiomatization of the deduction structures
D(L, p).

The axiomatization of B is complicated because it involves two languages.
We have already discussed the agents’ language L in the last chapter; it is used
in defining deduction structures, and hence is.a parameter of B. The language of
B itself, which can be thought of as an outside observer’s language (as opposed to
the agents’ langauge), is called LB. It includes modal operators for stating that
sentences are beliefs of an agent. Although in the most general case L and LB will
not be the same, it is often convenient to use LB for the agents’ language as well.
We will normally make this assumption, but the major results of the thesis do not
depend on it (for example, the soundness and completeness theorems in Chapter
4).

LB does not contain any expressions denoting deduction rules of agents. Thus
these rules are a parameter of the logic family, and are fixed once we decide to use
a particular logic of the family. The ensemble function p picks out a set of rules for
each agent. The reason we choose to make the deduction rules a parameter of B is

that it is then possible to find efficient proof methods for B. One of the interesting

40 Section 3.1: Block Tableaux

features of B’s axtomatization is that agents’ rules are actually present as a subset

of the rules of B; proofs about deduction structures in B use these rules directly in

their derivation.

The logic of B is framed in terms of a modified form of Gentzen systems, the
block tableau systems of Hintikka [20]. Although they may be unfamiliar to some
readers, block tableaux are easy to work with and possess some natural advantages
when applied to the formalization of deduction structures. Unlike Hilbert systems,
which contain complex logical axioms and few but powerful rules of inference (e.g.,
modus ponens), block tableau systems have simple axioms and a rich and flexible
method of specifying deduction rules. We exploit this capability when we incorpo-

rate deduction structure rules into B.

In this chapter we first present a short overview of block tableaux. Then we
give the postulates of the logic B, and present a particularization of B, BK, that uses
a block tableau method for belief derivation. BK is the simplest possible system of
this type, in the sense that it makes no assumptions about the knowledge an agent
might have of his own beliefs (hence we call it nonintrospective). In Chapter 7 we
introduce a theory of introspection based on belief subsystems, and define more

complicated versions of B that capture various properties of introspection.

3.1 Block Tableaux

Most of this section will constitute a review for those readers who are already

familiar with tableau systems.

3.1.1 The First-Order Language Ly

In what follows, we will use a standard first-order language, called Lo, as a
base for defining other languages. It has constants but no other function symbols.

In a later section on proof methods (Chapter 12) we will extend Ly to functional

Section 3.1: Block Tableaux 41

terms; but these are not necessary for block tableaux systems, and complicate the

exposition.

DEFINITION 3.1. The first-order language Lo is composed from the
following symbols.

1. For each positive integer n, a denumerable set of pred-
icates of degree n (generally roman capital letters, e.g.,
P, Q). We write P" to indicate that P is of degree n.

2. A denumerable set of individual variables (usually small
roman letters from the end of the alphabet, e.g., z, y).

3. A denumerable set of individual constants (usually small
roman letters from the beginning of the alphabet, e.g.,
a, b).

4. The boolean connective symbols A, v, D, and —.

5. The quantifier symbols 3 and V.

An atomic formula or atom of Lg has the form P*(cy,¢z...cy), where each
¢; is either an individual variable or constant. The normal formation rules for

compound formulas of a first-order language are used.

We define substitution instances of quantified formulas.

DEFINITION 3.2. Let a be a formula of Lg. For every variable z and
individual constant a the formula a3 is given by the following set of
inductive rules.

1. If ais atomic, then af is the result of substituting a for
every occurrence of z in c.

2. Ifo is a binary boolean operator, then

(@eB); =oagofy

(—la)gr = _Iag

3. If Q is a quantifier, then

(Qz.a)f =Qz.a
(Qy.a); =Qy.af

42 Section 3.1: Block Tableaux

A closed formula or sentence of Ly is a formula with no free variables, i.e. af =«

for every z and a. A ground atom of Ly is a closed atomic formula.

We will use lowercase Roman letters (p, g, etc.) as meta.va.ri:ibles that stand
for sentences of Lg, and lowercase Greek letters (a, ¢, etc.) for formulas (which may
also be sentences). Uppercase Greek letters (I' =qr {71, 72, ---}» A =ar {61,02,...},
etc.) stand for finite sets of sentences or formulas of Lp; in some few cases we let
them stand for infinite sets, usually with a prime mark (I'¥). By ¢,T" we mean the

set {¢}UT. We also introduce the abbreviation ~I' =g¢ {~v1,7¥9,...}.

An interpretation of Lg is a truthvalue assignment to all sentences of Ly;
this assignment must be a first-order valuation, that is, it must respect the stan-
dard interpretation of the Boolean connectives and the universal and existential

cuantifiers.

We call Ly uninterpreted if every first-order valuation is an interpretation
of Lg; partially interpreted if some subset of the first-order valuations are interpre-
tations of Lgy; and fully interpreted {or simply interpreted) if there is a singleton

interpretation of Lg.

A sentence of Ly is valid if and only if it is true in every interpretation of L.

3.1.2 Sequents

Sequents are the main formal object of block tableaux systems.

DEFINITION 3.3. A sequent is an ordered pair of finite sets of sen-
tences, (I', A). This sequent will also be written as I" = A, and read
as “A follows from T".”

A sequent T' = A is true in an interpretation of its component
sentences iff one of ~; is false, or one of §; is true. A sequent is valid

Section 3.1: Block Tableaux 43

iff it is true under all interpretations, and satisfiable iff it is true in at
least one interpretation.

From the definition of truth for a sequent, it should be clear that a sequent
I' = A is true in an interpretation just in case the sentence (v Ay2A...) D (63 véov
...} is true in that interpretation. Thus, in a given interpretation a true sequent can
be taken as asserting that the conjunction of 4’s materially implies the disjunction

of the &’s.

We allow the empty set to appear on either side of a sequent, and abbreviate
p=Aby=AT=¢byI= and ¢ = ¢ by =. By the above definition, == A
is true (in an interpretation} iff one of §; is true, I' = is true iff one of 4; is false,

and = is never true in any interpretation.

In a few special cases, we allow denumerably infinite sets on either side of
the sequent sign; the semantics is still given by Definition 3.3. Infinite sequents are
never used in proof methods, but only to indicate the truthvalue of an infinite set

of sentences.

3.1.3 Block Tableaux for Ly

The proof method that we adopt is similar to Gentzen’s original sequent
calculus, but simpler in form. It is called the method of block tableaux, and was
originat.ed by Hintikka [20]. A useful reference is Smullyan [63], in which many

results in block tableaux and similar systems are presented in a unified form.

A block tableaux system consists of axioms and rules (collectively, postulates)
whose formal objects are sequents. Block tableaux rules are like upside-down infer-
ence rules: the conclusion comes first, then a line, then the premises. Block tableaux
themselves are derivations whose root is the sequent derived, whose branches are

given by the rules, and whose leaves are axioms. Block tableaux look much like

44

Section 3.1: Block Tableaux

upside-down Gentzen system trees. (A more formal definition of a block tableaux

is given below).

We consider a system Tg (see Smullyan {63], pages 105-109) that is first-order

sound and complete: its consequences are precisely the sentences true in every first-

order valuation.

DEFINITION 3.4.

Axioms.

Conjunction Rules.

Disjunction Rules.

Implication Rules.

Negation Rulés.

Universal Rules.

Existential Rules.

The system Ty has the following postulates:

Lp=Ap
C - I''pag= A
Y Tpe=A
'=Apag
Co:
I'=Ap I'=A,q
I'=Apvg
Dy ——
Y T=Ap¢
Dy - I'pvg= A
2 T,p=A T,g=A
I'=Ap>og
L. —— P24
I'p=Aq
I - I'pog=A
2* T=A,p T,q=A
. F=>A,—1p
Ny I''p=A
I‘,—!p:»A
Nz : I'=A,p
I''Ve.¢g = A
U1:
T,¢Z V2.6 = A
I'=>Vz.¢, A
Us : = Ve.é, where a has not appearcd in

I'= ¢F,Vz.¢,A the tableau

I'=3z.¢4, A
= ¢3,35.6,5

Section 3.1: Block Tableaux 45

Idz.¢ = A
T,6%,3z.6 > A’

By

where a has not appeared in
the tableau

Remarks. Note the simple form of the axioms and the symmetric nature of the
inference rules {actually, each rule is a rule schema, since I', A, p, ¢, and ¢ stand
for formulas and sets of formulas of Ly). There is one rule that deletes each logical
connective on either side of the sequent. For example, the first conjunction rule
deletes a conjunction on the left side of a sequent in favor of the two conjoined
sentences; informally, it can be read as “A follows from I" and pa ¢ if it follows from
[, p, and ¢.” It is easily verified that each rule is sound with respect to first-order
valuations: if the premises are true in an interpretation, then so is the conclusion.

A proof of the completeness of Tg can be found in Smullyan [63].

DEFINITION 3.5. A block tableau for the sequent ' = A in a system
T is a tree whose nodes are sequents, defined inductively as follows:

1. T = A is the root of the tree.

2. If sequent s is the parent node of daughters 81...38yp,
then —— isarule of T.
Sl PR Sn
A block tableau is closed if all its leaves are axioms. If there is a
closed block tableau for the sequent I' = A, then this sequent is a
theorem of the system T and we write 7 I' = A.

A system T' is called a subsystem of T if every rule of T' is also a
rule of T: we write T' C T. If some subsystem T’ of T has exactly the
same theorems as T, then the rules of T not appearing in T' are said
to be eliminable from 7, or admissible to T/, and we write T' ~ T.

Block tableaux are similar to the AND/OR trees commonly encountered
in Al theorem-proving systems (see Nilsson [54]). Rules such as C3 cause AND-

splitting, while a choice of rules to apply at a tableau node is an OR-split.

46 Section 3.2: The Language of B

Example. Here is a block tableau for the sequent Jdz. Bz A Az, Vz.Cz > =Bz =
Jz. Ax A = Cz.

dz. Bz A Az, V2. Cz > - Bz = Jdz. Az A—-Cxz

Ez Bea Ae, V2.Cz > - Bz = dz. Az A -Cx
U1 Be A Ae,Ce > ~Be= dz. Az A —~Czx
EIC Be A Ae,Ce > ~Be = AeACe
I 1 Ae, Be,Ce > ~Be = Aen-Ce
z . Ae,Be,mBe= Aen—Ce c Ae, Be = Ce, Ae A Ce
Ne Ae, Be = Be, Ae A ~Ce 2 N Ae, Be = Ce,~Ce Ae, Be = Ce, Ae
% 1 Ae, Be, Ce= Ce x
X

p

The sequent to be proved is inserted as the root of the tree. By a series of reductions
based on the rules of Ty, the atoms of the sequent’s sentences are extracted from
the scope of quantiﬁers and Boolean operators. Splitting of the tree occurs with the
rules I3 and Cs; otherwise the reduction produces just a single sequent below the
line. If a tree is found where the sequents at all the leaves are valid, then the theorem
is proved, because it too must then be valid. Note that the logical inferences are
from the leaves to the root of the tree, even though we work backwards in forming
the tree. At each junction of the tree, the parent sequent is true in an interpretation

if all its daughters are true in that interpretation.

An important connection between theoremhood and logical consequence for

sequent systems is the following soundness theorem for tableaux.

THEOREM 3.1. IfT = pisa theorem of T (where p is a single sentence
of Lp), and all the rules of T are sound, then p is a logical consequence
of I'.

Proof. 1f the rules of T are sound, then every theorem of T is valid.
By Definition 3.3, this means that, in every interpretation in which
all of I' are true, p must be also.l}

Section 3.2: The Language of B 47

3.2 The Language of B

There are two languages that concern the system B. First, there is the agents’
language L, which we use to express the sentences that can be part of belief sub-.
systems. L is a parameter of the system B(L, p). The second language is the one
we use to express statements about the world and belief subsystems; this is the
language of B, and is symbolized by LB. LB contains atoms of the form [S;]p to
express belief, where S; refers to an agent and p stands for an expression of the

agents’ language L.

In keeping with the requirements of the recursion property (see Section 2.2.3),
we want [to also contain sentences that are about other agents’ beliefs, i.e., of the
form [Si]p. It is convenient, therefore, to consider systems in which the agents’
language [and the language of the system itself (the outside observer’s language)
are one and the same: I = LB. We make this assumption henceforward for every

logic of B, although it is a strictly a convenience.

The language LB is built up from a first-order base language Lg by the
addition of the operators [S;] for belief. Under the assumption that L = LB, L can
be determined once Ly is given, and we will often write write B{Lg, p).

DEFINITION 3.6. Let S1,52,... be a countable sequence of {names

for) agents. A sentence of LB based on Lg is defined inductively by
the following rules.

1. All formation rules of Ly are also formation rules of LB.

2. Ifp is a sentence, then [S;]|p is a sentence.

An ordinary atom of Ly is a.ﬁ atom of LB; a modal atom is a sentence of the
form [5;]p. In the modal atom [S;]p, p is said to be in the context of the modal
operator. Note that there are no free variables in p, and hence no variables that are
quantified outside of the contexts of a modal atom that appear inside its context;

all modal atoms of LBare ground. The language LB is extended in Chapter 9 to

48 Section 3.2: The Language of B

a language L98 that includes quantification into modal contexts; logics based on
LB have greater representational power (and also a more complex axiomatization)

than those based on LB.

The definition of a substitution instance of formulas of Ly (Definition 3.2) is

extended with the following rule for modal atoms.

4. ([Silo): = [Si]¢

We will use the abbreviation [S|T' =4; {[S]v1, [S]v2,---}-

3.2.1 Interpretations

We give here an informal overview of the semantics of B to help the reader

understand the calculus. The full model theory of B is presented in Chapter 4.

Interpretations of LB are formed from interpretations of its base language
Lg, together with an interpretation of modal atoms. Since modal atoms act like
no-argument predications relative to the semantics of Lg, an interpretation of IBis
completely defined by an interpretation of Ly, together with an interpretation of the
modal atoms: a truthvalue assignment that respects the intended meaning of the
belief operator. In the deduction model, an interpretation of the modal atoms [S;]p
is given by a deduction structure d;. If p is in bel(d;), then [S;]p is true; otherwise

it 1s false.

Because LB has no means of stating what the rules of a deduction structure
are, we parameterize the family of logics B(Lg, p) in terms of a set of deduction
rules p{7) for each agent. These rules will be given beforehand for a particular logic
of B and are fixed. The deduction structures corresponding to a logic B(Lg, p) are

all in the class D(Lg, p).

The reader should note carefully that the semantics for B differs completely

from that of most modal languages, in which the argument to the modal operator

Section 3.3: A Sequent System for B 49

is usually taken to denote a proposition that can take on a truthvalue in a possible
world. By contrast, arguments to modal operators in LB denote a sentence of Lg,
namely themselves. This distinction must be kept in mind when interpreting the

modal operators of LB,

3.3 A Sequent System for B

The deductive process that underlies the deduction model.is characterized
in very general terms by deduction structures and their associated belief sets. Until
now we have been deliberately vague about the exact nature of deduction rules and
the derivation process for an agent S;, which is symbolized by B o(i)- As stated in
Chapter 2, there are only five conditions that must be satisfied: the deduction rules
R must be effective, provincial, and sound, and the derivation operator } reflexive
and closed under deduction. Formally, we summarize these properties as follows:

(Effectiveness) The deduction rules p(i) are effectively applicable.

(Provinciality) The number of premises of each rule is finite and
bounded.

(Soundness) IT} oli) P then p is a logical consequence of T'.
(Reflexivity) P B_p(f) p.
(Closure) IfT By p and p, ¥ Boi) g then T,E B,y g

Suppose we are given beforehand a derivation operator o(5) satisfying the
above conditions for each agent S;. The central problem in the formulation of
B(Lg, p) is to find tableau rules that correctly implement the meaning of the belief

operator [S;] under the derivations Bo(i)-

Consider first the sequent [S;]T" = [S;]p. Its intended meaning is that, if all
of I are in S;’s belief set, then so is p. The only possible way that we can guarantee
this condition is if p is derivable from I for S, i.e., I' B,(;) p. If this were not the
case, then we could always construct the counterexample d; = (T', p(¢)} in which all

of I' are in d;, but pis not. Thus we can relate the truth of a sequent involving belief

50 Section 3.3: A Sequent System for B

operators to derivability in an agent’s belief subsystem. This relation is captured

by the inference rule

X, [SI]P = [S,]p, A

A:
r B'p(i) P

A is called the attachment rule, because it derives results involving the belief
operator by attaching sentences about belief to the derivation operator of an agent.
Since premise is the bottom sequent and the conclusion the top, we can read A
informally as follows: “If p is a deductive consequence of I in S;’s belief subsystem,

then, whenever S; believes I', he also believes p.”

The attachment rule thus refers directly to the belief derivation operator.
As discussed in Section 2.2, this operator stands for a derivation process that we
actually have in hand. Given a set of agent’s rules p(¢), we can run the belief
derivation process to determine if p follows from I' under p(7), and hence whether
B oli) P holds or not. Thus we can determine the validity of belief sentences in LB

by direct computation using an agent’s belief derivtion process.

The rule A is not strictly an acceptable tableau rule, since in order to apply
it we would have to extend the definition of block tableaux to include expressions

based on the symbol . A should really be defined as an axiom schema.:

LS = [Si]p. &, where T B ;) p. (3.1)

However, there are several advantages to retaining A in its rule form. The first
advantage lies in the ability to incorporate different types of derivation processes
into the sequent system. For example, in the next section we will particularize belief
derivation to provability in a sequent system. Given this choice, the attachment rule
will contain a sequent in the bottom half, and the steps of belief derivation become

deduction steps of B.

Section 3.3: A Sequent System for B 51

A second advantage is that we need not worry about the question of the
decidability of belief derivation. In the statement of the axiom, belief derivation
must be decidable in order for (3.1) to be a valid axiom schema. But in the rule
A, all that is required is that each of the steps in belief derivation be effective. We
can define a branch containing an occurrence of A whose premise is I’ B,y P to be
closed exactly when there is a proof of p from I' using the rules p(¢). Each step in
the construction of the tableau is thus effective, although theoremhood in B or in a

belief subsystem may not be decidable.

The attachment rule is similar in many respects to a device originally pro-
posed by Kripke [35] for the axiomatic study of modal systems. Kripke worked with
analytic tableaux, a method similar to block tableaux. His idea was to introduce
auxiliary tableaux as an addition to the main tableau of a proof. The purpose of the
auxiliary tableaux is to show that a set of modal atoms of the form {[S;]T, -[S;]p}
is inconsistent, in much the same way that we show that [5;]p follows from [S;]T
in the attachment rule. The analogy between the attachment rule and Kripke’s
technique is even more striking when we compare the system BK introduced in
the next section, or the view windows of the resolution system RK in Section 12.2.
Although the attachment rule was developed independently from Kripke’s system,
it can be considered to be a form of auxiliary tableaux adapted for the deduction
model. . The chief difference lies in the identification of a separate set of deduction
rules to model an agent’s belief subsystem; auxiliary tableaux use the same rules as

the main tableaux.

It is striking that two such widely different models, the deduction model and
Kripke’s possible-world model, led to an axiomatization that is so similar. We will
explore this similarity in Chapter 8, and prove a correspondence property between

the two models.

52 Section 3.4: The Nonintrospective Logic Family BK

We now give an axiomatization for the logics of the family B.

DEFINITION 3.7. The system B{Lg, p) has the following postulates.

1. The first-order complete rules Ty.
%, [SiT = [Silp, A
FBpe) p
3. A belief derivation operator B- ;) for each agent ;.

2. A:

The logic family B is a compact formalization of the deduction model, and as
such is useful in a theoretical analysis of the model, as in Chapter 4, where we prove
the soundness and completeness of the axiomatization. It is also a starting point
for finer-grained investigations of the nature of belief derivation. For instance, we
might be interested in the behavior of subfamilies of B in which the rules of p(¢} that
govern nested belief are as strong as A. In order to explore the fine structure of an
agent’s belief deduction process, we can fix the nature of f p(§) more precisely, and
examine the resulting systems. These will all be particularizations of B in which the
premise of the attachment rule A has been modified to correspond to the particular

belief derivation method chosen.

3.4 The Nonintrospective Logic Family BK

The rich set of rules, and the flexibility of tableau derivations, make tableau
systems a natural choice for the belief derivation process. In this section we define a
particularization of B, the logic family BK, whose belief derivation process is defined
in block tableaux terms.

DEFINITION 3.8. Letd = (B, T). A sentence p is BK-derivable from
premises I’ in d if and only if v ', B = p. We will write this as

I'Brp

We need to show that tableau system derivability as just defined satisfies the
five criteria of belief derivation: effectiveness, provinciality, soundness, reflexivity

and closure. Consider a sequent system Tmade up of sound tableau rules. According

Section 3.4: The Nonintrospective Logic Family BK 53

to Theorem 3.1, the theorem |+ I' = p of Timplies that p is a logical consequence
of T, so we are assured that |- satisfies the soundness criterion. Provinciality and
effectiveness are also satisfied, since the theorems of Tare built by using effectively
computable steps that operate on a finite number of sentences at each step. The
observant reader might object at this point that tableau rules may indeed refer to
an unbounded number of premise sentences; e.g., any of the rules of Ty have this
property, since I' and A can stand for any set of sentences. However, each rule of
To is actually a rule schema: the capital Greek letters are metavariables that are

instantiated with a fixed, finite set of sentences to define a rule.

The closure condition is fulfilled by a special subclass of sequent systems,

namely those for which the following rule, Cut*, is admissible:

I=p

*
Cut” : T= g Y

To see how this rule guarantees closure, suppose that I' = § and 8,2 = p are
both theorems of a sequent system T for which Cut* is admissible. Because both
premiscs of Cut* have closed tableaux, the conclusion I' £ => p must also be a

theorem.

Finally, the derivation process will be reflexive (p |+ p) if we include the

following axiom in the system T:

Id: Y,p=pA

Thus we only allow a system T to be used in belief derivation if the system is sound,

Cut* is an admissible rule of T, and Id is an axiom of T

An interesting consequence of using tableau derivations in BK is that the
attachment rule A can now be expressed wholly in terms of sequents, eliminating

the derivation operator. To see how this comes about, consider first replacing the

54 Section 3.4: The Nonintrospective Logic Family BK

belief operator in rule A by tableau provability, as given by Definition 3.8. This

yields

Z, [S:']P = [Sz']p: A
i“r(:') I'=p

A}{-:

where 7(7} is the set of tableau rules used by agent S5;.

Now ;) I' = p is true precisely if there is a closed tableau for I' = p, using
the rules 7(¢). Hence we should be able to eliminate the provability symbol if we
add th: rules 7(7) to B for the purpose of constructing a tableau for I' = p. In order
to keep the agents’ rules 7(¢) from being confused with the rules of B, we add an
agent index to sequent signs to indicate that the tableau rules are to be used for
that particular agent only. The final version of the attachment rule is

L, 15T = [Silp, A
I'=;p

Ak
Agents’ rules are expressed using the indexed sequent sign, e.g., if agent S; were to
use C», the following rule would be added to B:

I'=;A,pagq
'=;Ap TI'=;A,q

i .
ci

Taking the recursion property of belief subsystems seriously, we can iterate
the process just described for the attachment rule. Each agent treats other agents
as having a set of tableau rules. In formulating BK, there will be a tableau rule set
assoclated with each view (views are discussed in relation to the recursion property

in Section 2.2.3). We symbolize the set of tableau rules representing the view v by

7(v).

A sequent I' =, A, with index v, is a statement about the belief subsystem
of the view v. For example, if v = Sue, Kim, the sequent I' =>,, p states that p

follows from I' in Sue’s view of Kim’s belief subsystem. The deduction rules 7(v}

Section 3.4: The Nonintrospective Logic Family BK 55

always have sequents indexed by v in their conclusions (above the line). This assures

us that they will always be used as rules of the belief subsystem v, and of no other.

The logic BK can thus be parameterized by a set of tableau rules for each
view, and we write BK{Lg, 7) to indicate this. If the sequent I' =, A is a theorem
of the logic BK(Lg, 7), it asserts that the sequent I' = A is provable in the view v;
we write this as by (z,,r) I' =v A. If this sequent is a theorem for every choice of
Ly and p, we write gk I’ = A or more simply |- I’ =, A when BK.is understood.
Note that the presence of the index on the sequent means that we do not have to
state explicitly that the set of rules used to derive the theorem were those of the view
v. Properties of the actual belief subsystems are always stated using an unindexed
sequent, which we associate with the outside observer’s view; for example, to show
formally that if an agent believes p, then he believes ¢, we would have to prove that

the sequent [Si|p = [S;]g is a theorem of BK.

The exact form of A that is used in BK depends on the nature of the as-
sumptions we wish to make about the introspective properties of belief—how an
agent views his own belief subsystem. The simplest form of A is nonintrospective,
in that it does not give any special consideration to an agent’s view of his own
belief subsystem. Note that this does not mean that we consider agents to have no
knowledge of their own beliefs; just that there is no necessary connection between
what they believe about their own beliefs and their actual beliefs. In Chapter 7
we develop a theory of belief introspection that addresses this issue in some detail;

here we analyze the simpler system BK.

3.4.1 Postulates of BK(Lg, 7)

This family is parameterized by a base language Ly and tableau rules 7{v)
for each view v. The belief derivation process is taken to be the method of block

tableaux.

56 Section 3.4: The Nonintrospective Logic Family BK

DEFINITION 3.9. The system BK(Lg, 7) is given by the following pos-
tulates:

1. The first-order complete rules Ty.

2. The attachment rule

3, [5]T = [Si]p, A

AK IF'=;p

3. A set of sound sequent rules 7(v) for each view v which
contains the axiom Id, and for which the rule Cut* is
admissible.

Remarks. There are three parts to the system BK(Lg, 7). The first part is a set of
first-order rules for sentences about the actual world. These rules incorporate the
nonsubscripted sequent sign (=), and are complete with respect to the semantics

of first-order languages.

The second rule of BK(Lg, r) formalizes the way an outside observer views
agents’ belief subsystems. This is the sequent version of the attachment rule; it
relates sentences involving the belief operator [S;] to the sequent system representing
S;’s belief subsystem. As a simple example, let us assume that an agent S;’s belief
subsystem is such that @ can be derived from P and P > @. Then we can show
that, if S; believes P and P > @, he believes @:

[Si1P,[Si](P = @) = [Si]@Q
[Si)P[S{P>@),PRP2>Q=>;Q

Ak

which closes, since we assumed that | P,P > @ =; Q.

The rule Ag is a weak version of the attachment rule A in that it makes no
assumptions about the beliefs an agent may have of his own beliefs. For example,
we might argue that if an agent S believes a proposition P, he believes that he

believes it. All he has to do to establish this is query his belief subsystem with the

Section 3.4: The Nonintrospective Logic Family BK 57

question, “Do I believe P?” If the answer comes back “yes,” he should be able to
infer that he does indeed believe P, i.e., [S][S]P is true if [S]P is. However, as far
as rule Ag is concerned, an agent’s own belief subsystem has the same status for
him as does that of any other agent. In particular, Ag allows an agent to have false

and incomplete beliefs about his own beliefs.

The last part of BK is a set of rules formalizing the belief subsystem of
each view. These rules involve the sequent sign =, since they talk about agents’
deductive systems. They can contain rules that have a purely nonmodal import
(e.g., rules of Tp), as well as rules that deal with belief operators. The rule Cut*,
which implements the closure property of belief sets, must be an admissible rule of

7(v), and the axiom Jd must be present.

The rules 7(v) of a view v can be incomplete in several ways. They may
be first-order incomplete, in which case they cannot be used to draw all the conse-
quences of sentences involving nonmodal operators that they otherwise might (to
be first-order complete, it is sufficient for the rules Tp to be admissible in a view).
Another type of incompleteness arises in reasoning about sentences involving belief
operators. To be complete in this respect, a sufficient rule would be Ag. A view
for which this rule is admissible is called recursively complete. If every view of a
logic BK(Lyg, 7) is recursively and first-order complete, the logic is called saturated.

We will symbolize the subfamily of saturated logics by BK,.

3.4.2 Some Theorems of BK.

THEOREM 3.2. Let p be derivable from T in the view ¢ of BK(Ly, 7).
Then

Fek(zor) [SiIT = [Silp

58 Section 3.4: The Nonintrospective Logic Family BK

Proof. In one step, using rule Ag:

ISi]f = [Silp
'=;p
x

Ag

THEOREM 3.3. Let v be a recursively complete view of BK(Lg, 7),
and let p be derivable from I in the view v,i. Then

F [SiT = [Silp

Proof. In one step, using rule Ag of 7(v):

[SiIT = [Silp
r =pi P
X

Ak

Remarks. These two theorems show that BK has a weakened analogue of the
necessitation rule of modal logic (if p is provable, so is Op). If a nonmodal sentence
p is provable in the view 7 (ie, F8K(Lg,r)=>i P), then, by Theorem 3.2, [S;lp is
provable in the empty view. Since the theorems of 7(¢) are assumed to be sound, p
is first-order valid, and so must be provable in the empty view.® Hence, for first-
order sentences provable in the view ¢, necessitation holds. Theorem 3.3 establishes
this result for an arbitrary view in which A is an admissible rule. Depending on
the exact nature of the rule sets 7, necessitation will hold for some subset of the

first-order valid sentences of a particular logic BK(Lg, 7).

6 Care must be taken in restricting p to nonmodal sentences, since the semantics of modal operators
can change from one view to another (see the discussion of the recursion property in Section 2.2.3).

Section 3.4: The Nonintrospective Logic Family BK 59

THEOREM 3.4. ¥ lSdp=p

Proof, If pis a primitive sentence, then there is no applicable tableau
rule, and hence no closed tableaux for the sequent.§

Remarks. The familiar modal logic principle Op o p (if p is necessary, then p is

true) is not a theorem of BK, since beliefs need not be true.

THEOREM 3.5. X [S:]p = [S:][S:]p
Proof. The only applicable rule is Ag:

[Silp = [Si][Silp
p=y [S{]P

Ag

According to the semantics of the deduction model, the sequent p =;
[Si]p is not valid: just because a sentence p is true does not mean
that an agent S; believes it. Hence, there cannot be any set of sound
tableau rules for 7(¢) that causes p =; [S;]p to close.lj

THEOREM 3.6. £ - [Silp = [Si]-[Silp

Proof. We can apply either Ny or Ag. If we apply the latter, we
abtain

—[S;lp = [Si]-[Si]p
=; =[Silp

Ag

But —[S;]p is not a valid sentence according to the deduction model,
since it would require that no agent believe any sentence. Hence this
tableau cannot close.

If we apply Ny first, we obtain

—1Silp = [Si]-[Silp
= [S;]p, [S:']_'[Sl']p

60 Section 3.4: The Nonintrospective Logic Family BK

There are now two ways to apply Ag . In one application, we generate
the sequent =; —[S;]p, which cannot close. In the other, we generate
=; p, which cannot be valid, since it would require agents to believe
every sentence.ll

Remarks. These theorems show that no logic of BK sanctions any inferences about
self-beliefs. If an agent believes a proposition p, it does not follow that his model of
his own beliefs includes p; this is the import of Theorem 3.5. Similarly, if he does
not believe a proposition, he also may not have knowledge of it; this is Theorem
3.6.

4, Mudel Theory for the Language B

In Chapter 3 we introduced the logic family B as a formal means of describing
beliefs. With them, we proved some theorems about beliefs, e.g., if P follows from
@ in an agent’s belief subsystem, then he believes P whenever he believes Q. These
theorems are purportedly about beliefs as defined by belief subsystems: that is,
our intended meaning for the statement [S]p is that p is present in agent S’s belief
subsystem. However, we still have not shown that the calculi B are, in actual fact,
about belief subsystems. To do this, we must show that the sentences of B can
be interpreted in terms of deduction structures, the mathematical model of belief

subsystems.

The study of the formal semantics of a language usually involves semantic-
type formal objects: truthvalues, properties, domains of individuals, relations, pos-
sible w_orlds, and so on. An interpretation relates a structure composed of these
objects, called a model, to the sentences of the language. For the purely nonmodal
part of B, the model is standard: an interpretation of the base language Lg is a

first-order valuation of the sentences of Ly.

Modal atoms must also be assigned a truthvalue in an interpretation, and
one that is in accord with their intended meaning as belief operators—the assign-
ment must reflect the fact that they are sentences about belief subsystems, and
not something else. For example, if [S]p is true in an interpretation, and g follows

from p for S, then [S]g must also be true in that interpretation. In this scheme, a

62 Chapter 4: Model Theory for the Language B

modal sentence [S]p is assigned a value true if the sentence p is derived by the belief
subsystem of agent S, and false otherwise. If we think of belief subsystems as being
described by the belief set of a deduction structure, then the modal sentences [S]p

that are assigned a value true pick out the sentences p that are in S’s belief set.

Thus the easiest and most convincing way to ensure that we have captured
the intended meaning of the belief operator is to interpret modal sentences in re-
lation to a set of deduction structures, one for each agent. In an interpretation,
the belief set of an agent is modeled as the theory of a deduction structure: [S]pis
true in an interpretation exactly when p is 2 member of the theory of the deduction

structure modeling agent S’s belief subsystem.

There are several points to note about the formal model. The first is the
presence of syntactic elements in the semantic domain. Deduction structures and
theories consist of sets of sentences of L, and the proof-theoretic process of deduction
is an integral part of the model. This seems to be a necessity if we want to be able to
describe belief deduction as an incomplete process, i.e., one that cannot be modeled
by the complete logical consequences of a set of traditional semantic objects such

as possible worlds.

A second observation is that a simple deduction structure model makes no
claims about the interpretation of nested beliefs. Consider the sentence [S1][S2]P.
This sentence is true in an interpretation if the sentence {S3]P is a member of the
helief set of the deduction structure associated with agent S;. Note that a question
of truthvaluation has been converted into one of deduction. We are no longer asking
wlat the truthvalue of [Sp]P is, but rather if it can be derived in a certain system.
How then can we guarantee that the atom [S3] P receives its proper interpretation as
being about another belief subsystem, as required by the recursion property? The
answer is that we demand that deduction structure rules be sound with respect to

the intended meaning of the belief operator.

Section 4.1: Models and Interpretations 63

Soundness is a truth-theoretic property, and in order to talk about the sound-
ness of deduction structure rules, we must assign a truthvalue to sentences of the
internal language. The intended meaning of a nested belief like [S1][S2]P must be
formalized in terms of a deduction structure that represents S1’s view of 52’s belief
subsystem, in accord with the recursion property discussed in Section 2.2.3. This

is the course we pursue in developing a theory of belief introspection in Chapter 7.

In this chapter we introduce models for the calculi B(L, p), interpret the
sentences of LB with respect to these models, and show that the rules of B are
indeed sound and complete with respect to this semantics. These models, called
B-models, form the basis for all semantic studies of the deduction model. Recall
that B(L, p) is parameterized by an agent’s language L aﬁd a set of rules p(z) for
each agent S;. B-models are also parameferized in this fashion—each agent S;’s
belief subsystem is represented by a deduction structure whose base set comes from
the language LB and whose rules are p[7) (the deduction structure class D(L, p(¢)).
A B(L, p)-model is composed of a set d; of these deduction structures (one for each
agent S;), together with a first-order valuation of the nonmodal sentences of LB.
We will prove that B(L, p) is sound and complete with respect to its models. Note
that we will generally distinguish between the agent’s language L and the language
LB of B in this chapter, so that the results are valid even when these languages are

not identical.

4.1 Models and Interpretations

As discussed, we define a class of models by fixing the language L and rules
p of the deduction structures modeling each agent. The deduction structures are
used to assign truthvalues to modal atoms, and a first-order valuation is used for
nonmodal atoms. We need to introduce the machinery of first-order valuations
here; we follow Smullyan [63] in this regard, since his method avoids some of the

difficulties associated with scoping in quantified statements.

64 Section 4.1: Models and Interpretations

4.1.1 First-Order Valuations.

Consider a universe U of elements. We first define the notion of U-formulz:
formulz of LB with constants from U only.
DEFINITION 4.1. An atomic U-formula of LB is a tuple P&y ... &y,
where P is an n-ary predicate of LB, and each &; is either a variable

or an element of U. A U-formula of LB is a formula whose atoms are
all atomic U-formulze. EY is the set of all closed U-formulz.

The set EV includes all the pure sentences of LB: those that do not have
any constant terms or modal operators. We can define an interpretation for these
sentences that respects the meaning of the quantifiers and Boolean operators; we
call such an interpretation a first-order valuation of EU.l

DEFINITION 4.2. A first-order valuation v of EV is an assignment of
truth values to all elements of EV such that

I. v respects the meaning of the Boolean operators.
2. v(Vz.e) =t iff for every k € U, v(af) =t.
3. v(Jz.a) =t iff for some k € U, v(af) =t.

An atomic valuation vy is an assignment of t or f to every atomic
element of EV.

Every atomic valuation of EV can be extended to exactly one first-order
valuation of EV (this is proven informally in Smullyan [63]). Generally we will use

atomic valuations to specify first-order valuations, since they are simpler.

The set EU doesn’t include any sentences with constant terms. To specify an
interpretation for these, we use a mapping ¢ from constants to elements of U. Taken

together, ¢ and vy specify a first-order valuation for every nonmodal sentence of

LB,

Section 4.1: Models and Interpretations 65

4.1.2 Hintikka Sets.

These sets are a useful tool for relating the semantics of sentences to tableau

operations. Hintikka sets are formed from sentences of EY.

DEFINITION 4.3. A Hintikka set is a set of sentences W of LB such
that the following conditions hold:

1. No atomic element of EV and jts negation are both in
w.

2. If--aisin W, then o is in W.

3. Ifanp (-{avp))isin W, then o (—a) and 3 (~f§) are
inW.

4. Ifavp (~(anp))isin W, then one of & (—~a) or 3 (—f)
isinW.

5" Ifa>f (~(a>p}) isin W, then one of -a (a) or B
(~8) is in W.

6. If Vr.a(z) (-3z.a(z)) is in W, then for every k € U,

a(k) e W (—a(k) e W)

If 3zr.a(z) (-Vr.a(z)) is in W, then for some k € U,

alk) e W (—a(k)e W)

~1

An important property of every Hintikka set is that it is first-order satisfiable,

1.e., there exists a first-order valuation that satisfies every member of the set.

THEOREM 4.1. Let U be the constants of LB, and W a Hintikka set
of sentences of LB. There is a first-order valuation {vg, o, U) of the
sentences of W, where ¢ maps every constant to itself.

Proof. The proof is in Smullyan {63].B

4.1.3 B(L, p)-models.

A B(L, p)-model consists of a first-order valuation for LB and a set of deduc-

tion structures from the classes D{L, p(?)).

DEFINITION 4.4. A B{L, p)-model is a tuple {vg, ¢, U, D), where vy is
an atomic valuation of E¥, v is 2 mapping from constants of LB to

66 Section 4.1: Models and Interpretations

elements of U, and D is a sequence consisting of one member from
each of the classes D(L, p(7))-

We now define a valuation V of all sentences of LB with respect to a B(L, p)-

model m.

DEFINITION 4.5. Let m = (v, ¢, U, D) be a B(L, p}-model, and s a
sentence of LB. The valuation function V (s, m} is defined by:

1. V/(s,m) is a first-order valuation that agrees with vy and
¢ when s is nonmodal.

2. V(|S;lp,m} =t iff p € bell(d;), where d; € D.

The valuation function V is simply a first-order valuation that respects the
meaning of the belief operator as indicating membership in the belief set of a de-
duction structure. A B(L, p)-interpretation of the sentences of LB is an assignment
of truthvalues produced by the valuation function with respect to some model, i.e.,
these interpretations are the class of functions defined by I(s) =41 Xs.V (s, m) for
any D{Lg, p) model m. A sentence of LB is B(L, p)-satisfiable just in case it is
true in some B(L, p)-interpretation, and B(L, p}-valid exactly when it is true in all
B(L, p)-interpretations. We will write m s if V(s,m) =t, and B(L,p} F sif s is
B(L, p}-valid.

Example. Let Ly contain the nilary predicate symbols P and Q. We wish to
construct a model in which P is true (of the actual world), @ is false, the agent has
the complete rules Tg, and has P and P > @ in his base set of beliefs (the universe
U and mapping ¢ do not matter for this propositional language). A model that

represents this situation is:

m =gy ({P}, p, U, ({P;PDQ}:TO))

Section 4.2: Soundness and Completeness) 67

From m, we can compute the following truthvalues for sentences of LB:

V(P,m)=t
Vig,m)=f»

V(P> @Q,m)=H1
V{([S]P,m) =t
V([SI(P>Q),m)=t
V{[s]Q,m)=t

The agent S has a false atomic belief about the world, namely Q.

4.2 Soundness and Completeness

We now prove the soundness and completeness of B with respect to its in-

terpretations. For convenience, we repeat the postulates of B(L, p):

= The first-order complete rules Tj.

B, 5T = [5]a, A
I Bopiy @
B o(i) A closed derivation operator for each agent S;.

A

To prove soundness, we first prove a preliminary lemma about the relation

between deduction structure belief set and sequents of B.

LéMMA 42 Let p(i) be a set of deduction rules for agent S;. If
I By, o, then [S;]' = [S;]a is true in every B(L, p)-model.

Proof. Suppose to the contrary that [S;][" = [S;]a isn’t valid; then
by definition there must be some deduction structure d; = (B, p;)
such that o isn’t a member of bel(d;), and I' C bel(d;). Since I' 5, a,
a must be included in bel{d;) by the closure property of deduction
structures, a contradiction.

The import of Lemma 4.2 is that it relates the notion of theoremhood for

the indexed derivation operator to the notion of validity for the belief operator; in

68 Section 4.2: Soundness and Completeness

formal symbols, I' §-,(;) @ — B(L, p) E [S;]T" = [S;]a. 1t is the key step in proving

the soundness of B.
THEOREM 4.3. (Soundness of B)

|—B(L‘p)I‘=>A — B(L,p)ET = A

Proof. Consider a closed tableau for some theorem of B. We would
like to show that the root of the tree is valid. We do this by showing
that whenever a set of daughters is valid, the parent is valid, i.e., the
deduction rules preserve validity. Then if the axioms are valid, the
root node (and indeed every node in the tableau) must be valid.

The first-order complete rules are valid, since every B-interpretation
is a first-order valuation. By Lemma 4.2, the top sequent of the
attachment rule is also valid. Hence every sequent in a tableau is
valid. |

Remarks. We have proven the soundness of B relative to a closed derivation oper-
ator for each agent. Note that the condition of soundness on an agent’s rules was

not used in the proof of this theorem.

To prove completeness, we first prove a lemma that is the converse of Lemma

4.2,

LEMMA 4.4. (Attachment) If the (perhaps denumerably infinite) set
{[S;]T",=[S;]A"} is B(L, p)-unsatisfiable, then for some § € A' and
finiteT CT/, T B—p(;) d.

Proof. Assume that for all sentences § € A’ and all finite subsets
rcr,r Ep(,-) 8. Then we can construct a deduction structure
d; =41 (T, p(#)}, which has the property that no member of A’ is in
bel(d;). Hence, for the B(L, p)-model m =4; (v, 0, U, {... d; ...}} we
have m | [S;]« for each ¥ € ', and m £ [S;]6 for each 6 € A.1

Section 4.2: Soundness and Completeness 69

COROLLARY 4.5. Forsome b € A,

B(L,p) E[SiT = [Si]A — TB,;é

THEOREM 4.6. (Completeness of B) Let I' and A be finite subsets
of ' and A/, respectively. Then

B(L,p) T = A" — Fe,) I = A

Proof. Since the semantics of B is similar to that of a first-order
language in which the modal atoms act like unanalyzable atomic sen-
tences, the proof is a slight modification of the method in Smullyan
[63] for the first-order system Ty. We will show that if there is no
closed tableau for any sequent I' = A, where I' and A are finite sub-
sets of IV and A/, then there is a tableau with an infinite branch all
of whose sequents are B-satisfiable.

Suppose there is no closed tableau for any such sequent. Then we
can construct an open tableau with an infinite branch b, using all the
sentences IV and A’. Let L; = II; be the jth sequent of b; define the
set W by U;{X;,—Il;}. If we have constructed the open tableau in a
systematic manner {see Smullyan [63], pp. 58-60, for one method), W
will be a Hintikka set. By Theorem 4.1, we know that W is first-order
satisfiable. We must show that it is also B-satisfiable.

W contains a (perhaps infinite) set of modal atoms [S;]I'; and nega-
tions of modal atoms —[S;]A; for each agent S;. Since there is no
closed tableau, there js no finite subset I";- C T; such that I";- B-p(,-] O;
for any 6; € A;. Hence, by the contrapositive of the attachment
lemma, the set {[S;|T';, =[S;]A;} is satisfiable for any S;.1

The compactness of B follows immediately from the completeness theorem.

COROLLARY 4.7. (Compactness of B) If a set of sentences of LB is
unsatisfiable, it has a finite unsatisfiable subset.

b. Representational Extensions to B

This chapter covers a number of extensions to deductive belief logics that
are useful for Al problem-solving systems: knowledge (as opposed to belief), a
theory of ignorance, a representation for common belief, and a simple theory of
situations. ‘With each extension, we give a semantics in terms of models of B;
the given axiomatizations are sound and complete with respect to these models,

although we will not prove this explicitly.

In terms of the rest of the thesis, the theories of ignorance, common belijefs,
and situations are important for understanding the solution to the Not-So-Wise Man
Problem in Section 6.3, and the example in Appendix A. We collect the relevant

tableau rules into a system BY that is summarized at the end of this chapter.

5.1 Knowledge

Often we will want to say of an agent’s beliefs that they are true, that they
correctly correspond to the current state of affairs. If the agents’ language L is the
same as LB, we can do this for any particular belief p by simply stating [S;}p > p:
whenever S; believes p, it is true. If every belief of an agent is true, then this
becomes an axiom schema, valid for every sentence p. In tableau terms, we write

the following rule.

T[S0 = A

Ko: ssrrT=A

72 Section 5.1: Knowledge

Ky states that if all of I' are believed, then they are also true. Using Kg, we can

prove the axiom schema [S;]p > p:

= [Silp>p
[Silp=p
[Silp,p = p
X

I

If we wish to consider the more general case in which the agents’ language
is not the same as LB, then we must introduce a modal operator T into LB such
that the intended meaning of Tp is that p is true. Because p does not refer to a

sentence of LB, the normal Tarskian definition of truth can be axiomatized using

T (see Moore [51], pp. 78-80).

Models for systems with the rule Ky are the same as B-models, with the

restriction that if p € bel(d;), then V (p) =t.

In the AI literature, true belief is often called knowledge; or to put it more
exactly, a concept called knowledge is often defined, which has the same axiomati-
zation as belief, except that the axiom schema [S;]p > p is assumed (see Hintikka
[21], McCarthy [44], and Moore [51]). A competing convention in Al is to call sets
of statements about the world “knowledge bases,” even when the statements could
be false (as in Levesque [38]). For the most part, we will use the former convention
in this thesis, although in a few informal expositions where the word “belief” sounds
awkward, we have substituted “knowledge.” Any belief logic in this thesis can be

converted into a corresponding knowledge logic by the addition of the rule Kj.

In epistemology, the branch of philosophy dealing with the study of knowl-
edge, it is generally agreed that knowledge and true belief are not the same concept:
for example, a distinction is made between beliefs that just happen to be true, and

beliefs that are true because an agent has justifications for them. Issues of this

Section 5.2: Circumscriptive Ignorance 73

sort will become important as attempts are made in Al to build more complicated
cognitive structures {e.g., that contain justifications for beliefs), and the concepts
of knowledge and true belief will have to diverge. However, for many purposes it is

reasonable to approximate knowledge as true belief.

5.2 Circumscriptive Ignorance

In many situations, representing what isn’t the case often turns out to be a
harder problem than representing what is. McCarthy (McCarthy and Hayes [45])
was the first to point this out as an important problem for AL he called it the
qualification problem. To illustrate it we use the example of the Missionaries and
Cannibals puzzle {(McCarthy [47]). A formalization of this puzzle usually consists of
a set of sentences in a formal language that express the basic facts of the situation,
such as the presence of a boat, three cannibals, and three missionaries. However,
a formal statement of the puzzle is open to the following line of attack: someone
who is looking for an easy way to solve it might say “well, just use the bridge
upstream.” Certainly, there is nothing in the formalization that says there isn’t
such ar bridge; so we write down an axiom to exclude that. But then there are many
other ways, an infinite number in fact, to get around the hidden assumption that
the missionaries and cannibals are restricted to using just those objects presented in
the puzzle, and further that the objects perform as expected, i.e., the boat doesn’t
leak, and so on. How does one formalize these hidden assumptions? McCarthy’s
solution was to introduce a circumscription schema. The idea is that, once we have
a first-order formalization that describes a situation, we can find an instantiation
of the circumscription schema that will effectively state the assumptions that we

automatically take to be part of the rules governing the situation.

A similar problem occurs with the representation of beliel subsystems. In
puzzles that involve reasoning about the beliefs of agents, there are often unstated

conditions on the initial information given an agent, as well as on the information

74 Section 5.2: Circumscriptive Ignorance

he can acquire. In the Wise Man Puzzle (see Section 6.3 for a full statement of this
puzzle), it is common knowledge that each man can see his neighbors’ spots but not
his own. It is an unstated condition of the puzzle that this is the only knowledge
that the wise men have about the initial situation. In effect, the knowledge that is
available to the agents in the puzzle is being circumscribed; informally one would
say “The only knowledge that an agent S has about proposition p are the facts F.”
If from F it is not possible for S to infer p (or -p), then S does not know whether
p is true. In an adequate formalization of the Wise Man Puzzle, it must be possible
to state conditions of this sort, and prove from them that each wise man is ignorant

of the color of his own spot in the inijtial situation.

Let us give the name circumscriptive ignorance to those situations in which
agents have only a limited amount of information available in deciding a particular
question. Note that the language LB is not expressive enough to represent circum-
scriptive ignorance. Suppose, for example, that we want to say that Sue believes
our two favorite sentences P and @, and all the consequences she can derive from
them, but no others. We could start to list all of the things she doesn’t believe:
—[Sue]—-Q, —[Sue]-P, and so on. Obviously, if there are an infinite set of primitive
sentences, there is no finite way to complete such a list. To put this another way:
in B it is possible to say that some sentences are in a beljef set, and some aren’t;
but there is no finite way to say that a set of sentences are the only ones that are

available in a belief set for deriving a particular belief.

To formalize circumscriptive ignorance, we add a circumscription operator’
to LB. It is written as (S; : T), where T is a finite set of sentences of LB, and used
in expressions of the form {S; : T')p, where p is a sentence of LB. The intended
meaning is that p is derivable from I' in the belief subsystem of agent S;, that is,

I B,(;) p- Thus, the circumscription operator elevates the belief derivation process

7 This operator is a variant of the one introduced in Konolige [31].

Section 5.2: Circumscriptive Ignorance 75

to a first-class entity of the language (as opposed to belief operators [S;], which

simply state that certain sentences are or are not in the belief set).

While it may not be apparent at first glance, the circumscription operator
is a powerful tool for representing situations of delimited knowledge. For exam-
ple, to formally state the condition, “the only knowledge that agent 5 has about

proposition p are the facts F,” we could use

(S:Fyp=[Slp . (5.1)

This assertion states that S believing p is equivalent to S being able to derive p
from F. The forward implication is trivial, since it just says that p is derivable
from F by agent S, ie., [S]F > [S]p. The reverse implication is more interesting,
since it states p cannot be a belief of S unless it is derivable from F. This limits
the information S5 has available to derive p to the sentences F, and thus gives the
circumscriptivé content of (5.1). Note that there is no way to formulate the reverse

implication as a sentence of LB using only belief operators.

An example of the ﬁse of the circumscription operator to represent circum-
scriptive ignorance is given in the solution to the Wise Man Puzzle in Section 6.3;
readers who are uncertain about the consequences of an axiom such as (5.1) might
wish to consult it. In the remainder of this section we will give an axiomatization of

the circumscription operator, and discuss some limitations and possible extensions.

5.2.1 Axiomatization of the Circumscription Operator

For circumscriptive ignorance, we add the following formation rule to Defi-

nition 3.6 of LB:

3. I pisasentence and I' is a finite set of sentences, then {S; : I')p
Is a sentence.

76 Section 5.2: Circumscriptive Ignorance

Sentences of the form (S; : T')p are called circumscriptive atoms. Note that, by
this inductive definition, sentences that contain the circumscription operator can
appear inside circumscriptive atoms. This allows agents to have beliefs about the
circumscription of other agents’ beliefs. However, we do not allow quantifying into

the context of circumscriptive atoms—both I' and p must be sentences.

We now give tableau rules for circumscriptive atoms.

Cirey - E= (S :T)p, A
IByy P

Cirey - (S :Thp=>A
FB’p(f) 4

Remarks. These rules are a straightforward formalization of the intended meaning
of the operator in terms of belief deduction. The first says that the circumscriptive

atom {S;: [pistrueif T B o) P while the second says that it is false if FB—p(,-) 7,

Example. Suppose the agent Sue believes only the sentences P and P > @ in a
situation; we want to show that she doesn’t believe R. Thus we want to prove the
sequent {Sue: P, P > Q)R = [Sue|R = —[Sue]R.

C (Sue : P,P > Q)R = [Sue|R = —[Sue]R
I‘ (Sue: P,P > Q)R > [Sue|R, [Sue]R > {Sue : P, P > Q)R = —[Sue]R
'ff,. (Sue: P,P> Q)R=-[SuelR = = [Sue]R,~[SueR
e PP>QF,;) R 2 "[Sue]R = [Sue]R
K

P P> Q,B-p(,-) R is valid if the rules p(7) are sound, and so both branches of the
tableau close. Note that only the reverse implication half of the equivalence was

needed.

Section 5.2: Clircumscriptive Ignorance 77

It is an interesting exercise to show that (S; : I'}p = [S;][o [S;]p holds, but

the converse doesn’t.
THEOREM 5.1. B+ Gire;+Cire, (Si : T)p = [Si]I' = [Si]p
Proof. We have the following two tableaux for this sentence.

(S; : D)p = [SAT = [Si]p

N Bt = i
LBy p
iD= [SiIT = [Si]p
i (1: (Si : T)p, [SiIT = [Silp
ireg

Y P OL

Either p is derivable from I using the rules p{}, or it isn’t. In either
case, one of these tableaux closes.ll

THEOREM 5.2. /FB[Lo,p)-f-CfrCl-f-Cfl’Cz [S,]F) [Sl}p = (S; : P)p
Proof. We have the following tableau:

5 [SiT > [Silp = {Si : T)p
Silp= {5 :T)p . =[S, (S;:T)p
LBy p Cirer LBoiyp

I

Circy

For some choices of the rules p(i} and sentences I' and p, the belief
derivation will not hold, and so this tableau will not close.ll

5.2.2 Limitations and Extensions

A circumscription atom {S; : I')p has an argument p, so that it is possible
to assert that I' is the only information available for deriving p. The ability to
name a sentence p that we are interested in is often very useful, since it lets us
apply circumscriptive ignorance to a particular belief. In effect, we can disregard

all the other information an agent may have about the world, and say that, with

78 Section 5.2: Circumscriptive Ignorance

respect to the particular sentence p, I' are all the beliefs that need be considered.
In this way, the circumscription operator solves what Moore [51] has called the
compartmentalization problem: the problem of representing the ability of agents

to exclude from consideration all but a small subset of their beliefs when trying to

answer a belief query.

However, it may be the case that we want to circumscribe the fotal set of
beliefs of an agent, that is, to say that the base set of an agent must be contained in
a finite set I". This cannot be done in a finite manner with the circumscription op-
erator as defined, since we are forced to give a particular argument to the operator.
A variation of the circumscription operator that does not take an argument is useful
here. Suppose we let the sentence {S; : T’} mean: “the most that S; could have in his
base set are the sentences I'.” The following rule axiomatizes this circumscription

operator.

%, [Silp, (S; : T} = A
Ty [Silp

T
Circy :

Circo states that if p does not follow from T' according to agent S;, one of [S;]p
or {S; : T) is false: either p is not one of S;’s beliefs, or there are other sentences
besides I' in the base set. Circ"l can be used to prove that an agent doesn’t believe
something; for example, we could show that if S; has at most the sentence P in his

base set, he doesn’t believe Q:

N, 152 P) =[50
cjmlp {S;: P}, [5i]Q =
' PRy @

Another extension we might wish to make is to allow quantifying into the
argument of the circumscription operator, as we do for belief operators in Chapter
9. We would then be able to formalize situations like the following: “The only

information Sue has about her local chapter of the DAR is that there is someone

Section 5.2: Circumscriptive Ignorance 79

whom she believes to be a member.” However, the axiomatization of quantifying-in
for the circumscription operator turns out to be complex, and we have not been

able to find any useful proof methods for it.

There is, however, an alternative to quantifying-in that is more in the spirit
of our original work on circumscriptive ignorance (in Konolige [31]). That is, we
assume that the sentences I' and p of a circumscriptive atom are a description of
the beliefs of an agent, rather than referring directly to the beliefs themselves. So,

for example, we would rephrase (5.1) as

(S:[SIFNSlp=1[Slp - (5.2)

Note that the agent argument in the circumscription operator is now redundant and
can be dropped. With this new operator we have a way of representing quantified-in
descriptions of an agent’s beliefs for the purposes of circumscriptive ignorance. For

example, we might state

(3z.[S] Pz)[S]|Pa = [S]Pa , (5.3)

which says that the only belief S has about Pa is a belief Pz for some individual z.
The penalty we pay for this increased expressivity is a more difficult axiomatization.
While the tableau rules Circ; and Circg related circumscriptive atoms to belief
derivation in an agent’s subsystem, the modified notion of circumscription must be
axiomatized in terms of the proof process of B itself. We would use the following

tableau rules.

. = (I
Cu*c’l’ : = 2 (T)p, A
FB+ Circ}+Circlj P
=
Circ’z" : L,{lp = A

TF B+ Circy + Circy p

80 Section 5.3: Common Beliefs

Circ'l’ and Cire involve the logical deduction operator on the system B +
Circ] + Circl], instead of belief deduction in an agent’s subsystem. These rules
can only be implemented as deduction rules if the theory of B + Circ} + Circ} is
decidable.

5.3 Common Beliefs

A common belief is a belief that every agent has, and that every agent
believes every agent has, and so on to arbitrary levels of belief nesting. Common
beliefs occur frequently in the statement of puzzles such as the Wise Man Puzzle,
and are also essential in the understanding of communication among agents (see,

for example, Clark {6]).

Common beliefs have a natural interpretation in terms of the deduction
model. Let us use the notation [Sp]p to say that p is a common beliefl. One
condition we want to 'impose on the truth of [Sp)p is that p be contained in the
belief set of every agent S;. A further condition is that every agent must believe
that p is a common belief; and so [Sg|p must also be present in each agent’s belief
set. Taken together, these two conditions allow common beliefs to percolate down
to arbitrary levels of belief nesting, for if an agent believes [Sy]p, he will believe
every agent believes [Sp]p (by the second condition), and so on. Note that modal
operators containing Sy have exactly the same form as those using “real” agent
names S;, ¢ > 1. We are thus led to consider Sy as a fictional agent whose beliefs

are common beliefs,

McCarthy [44] was the first to propose that common knowledge be repre-
sented by the use of a fictitious agent FOOL whose knowledge “any fool” would
know. He uses a possible-world semantics for knowledge, and so all consequences
of common knowledge are also known. The theory of common belief presented here
uses an obviously similar approach; it differs only in that common belief rather

than common knowledge is axiomatized {common beliefs need not be true), and in

Section 5.3: Common Beliefs 81

having a deduction structure semantics, so that common beliefs need not be closed

under logical consequence.

The concept of common beliefs presented here can be generalized to mutual

belief, in which a subset of the agents share beliefs (see Appelt [1], pp. 51-54).

The semantics of common belief in B-models is straightforward; we simply
modify the valuation function V" for belief atoms to reflect the fact that every agent

has the common belicf. To Definition 4.5 we add the following rule:
3. V([Solp) =t ifffor all i > 1, p € bel(d;) and [Sp|p € bel(d;).
5.3.1 Axiomatization of Common Beliefs

In the language LB, we allow [Sp] to be a belief operator. An atom of the

form [Sg|p is called a common belief atom.

The tableau rule for common belief is 2 modification of the attachment rule.

We also place a condition on the common belief derivation rules p(0).

ACB | %, [SojA, [Si]T = [Sile, A
- [SolA AT By @
B-p(o] A closed derivation process for Sy, such that p(0) C p(¢)
for every . : ‘

Remarks. The attachment rule ASB differs from A in that common beliefs are
carried down to be used in belief derivation. Note that both A and [Sg]A are present,
fulfilling the two conditions that we want common beliefs to satisfy. The common
belief derivation rules p(0) are those that any agent must know. The analogy to
McCarthy’s “any fool” concept is very strong here, because we have even endowed

this fictitious agent with his own rule set.

82 Section 5.4: A Simple Theory of Situations

We prove one theorem about B + ACB: jf p is 2 common belief, then it is a

common belief that this is so.

THEOREM 5.3.

Fg+4CB [Solp = [Sol[:So]p

- Proof.

4CB [Solp = [So][Solp
[Solp, p & p(0) [Solp
b4

Some examples of the use of common beliefs are given in the solution to to

Wise Man Puzzle and the Not-so-Wise Man Problem (Section 63)

5.4 A Simple Theory of Situations

We now describe and axiomatize a simple theory of situations. This theory
will be used in the solution of the Wise Man Puzzle, and illustrates one method of
formalizing the acquisition of new beliefs through time. The theory actually fits the
concept of knowledge better than belief, since we assume that beliefs, once held,

are never relinquished; we do not deal with belief revision in this simple theory.

The basic approach is to define an infinite set of situations ¢1,{2,... that are
fully ordered with respect to time, so that {; < £ < Each situation describes
a state of the world, including agents’ beliefs; that is, it is a B-model. We assume
that if S believes p in situation {;, he also believes p in every situation ¢; such that
7 > 1. Another assumption is that an agent’s belief derivation rules do not change
over time: if he uses the rules p(7) in situation #1, then these are the rules he uses

in every situation.

Section 5.4: A Simple Theory of Situations 83

5.4.1 Axijomatization of Situation Operators

To formalize this theory, we add a sequence of situations ¢y, to,... to LB,
and include them as an argument to the belief operator. [S,{]p means that agent
S believes p in the situation f. The tableau rule for these belief operators is the

following modification of the attachment rule.

S, tkl]I‘l, [S;, tkz]rg, o= Sy th)a, A

A5 ;
Ly Toe B @

, where th. <tn.

Remarks. The attachment rule 45 allows an agent’s beliefs in situations previous
to a situation ¢, to contribute to the derivation of beliefs in ¢,; hence beliefs are

cumulative with time, as we now prove.
THEOREM 5.4. Ift; <¥,, then
I_B-i-AS [Sfr tk]p = [SI'J tn]p
Proof.

[Si! tk]p = [st tn]P
PBoiy P

AS
This tableau closes by the definition of §-. 1

Although we have chosen to make p a function of the agent only, and not the
situation, it is a simple extension of this theory to allow for agents having different
derivation rules in different situations. The attachment rule AS remains the same,

except that the index on p becomes p(i, n) for situation ¢5.

The theory of situations given here was first presented by McCarthy [44]
in solving the Wise Man Puzzle, who formalized it by axiomatizing its possible-

world semantics. Sato [61] developed a Gentzen system axiomatization of both

84 Section 5.5: The System B

common knowledge and McCarthy’s situational theory, using a propositional modal

language.

5.4.2 Semantics

The models of situations are defined in terms of B-models. To each situation
t, we assign a B-model mj. Because beliefs are cumulative in time, there is a
restriction on allowable my’s: the belief set of an agent in situation {; must include

his belief set in situation ¢;, if # < 7. We call the resultant models B*-models.

The valuation of belief atoms in B*-models is given by the following rules:

If S; # So, V([Si» telp,m) = t iff p € bel(d¥), where df € DF.
3. V([So,tglp) =t iff for all i > 1, p € bel(d¥) and [Sp, t]p €
bel(d?).

5.5 The System B*

We collect the theories of common belief, circumscriptive ignorance, and
simple situations into a single deductive logic family B*. Its language IB" includes
a sequence of situation #y,s,..., circumscriptive atoms {S; : I')p, situational belief

atoms [5;,;]p, and common belief atoms [Sp, ¢;]p.

Let Z be a set of positive belief atoms; we define the set of sentences

Y (S;,t;,Z) as the least set satisfying:

i
L. I [S;,tk]p € Z, where tg <, then p is in Y (5;, ¢4, Z).
2. 1If[So,tr]p € Z, where ¢} <t} then p and [Sp]pare in Y (5;, ¢;, Z).

Y(S;,¢j,Z) can be thought of as all those sentences that the literal set Z asserts to
be in the belief set of agent 5; at time {;.

We now define the system B*.

Section 5.5: The System Bt 85

DEFINITION 5.1. The system BY(Lg, p) has the following postulates.

= The first-order complete rules Typ.

E,Z = [S:‘., tn]C\',A ‘

At
Y (S;, tn, Z) B'p(i] a
. = (S, :T)p, A
Clirey - T B‘p(i) >
{8, : T
O’iTCz . 1 (Sntk)p = A
Loy
B oli) A closed derivation process for each agent

S;, such that p(0) C p(i) for every i.

The nonintrospective version of Bt, called BKt, substitutes indexed sequents

for belief derivation in the rule 47%;

E,Z = [S:‘, tn]a,A
Y(Siatnt Z) =i o

+ .
A}

6. Three Problems in the
Representation of Belief

In this chapter we use the logic B to solve some problems in the representation
of belief. These problems illustrate in some detail the types of incompleteness an
agent may be subject to in reasoning about his beliefs: resource incompleteness,
fundamental logical incompleteness, and relevance incompleteness. In formulating
answers to the problems, we have tried to steer clear of solutions that are trivial,
in the sense that they solve the representation problem, but only at the expense
of excluding types of reasoning that might be expected to occur. For example, in
the chess problem, it would be a sufficient but unrealistic solution to credit each
player with no deduction rules at all. Instead, we try to find rules that allow a

resource-limited amount of reasoning about the game to take place.

6.1 ‘The Chess Problem

Suppose an agent knows the rules of chess. It does not necessarily
follow that he knows whether White has a winning strategy or not.

The chess problem, on the face of it, seems hardly to be a representational
problem at all. Certainly its statement is true: no agent, human or otherwise,
can possibly follow out all the myriad lines of chess play allowed by the rules to

determine whether White has a strategy that will always win. What kind of model

88 Section 6.1: The Chess Probiem

of belief would lead us to expect an agent to know whether White has a winning
strategy? The answer is, of course, a2 model that does not take resource limitations
into account in representing an agent’s reasoning about the consequences of his

heliefs. Within such a model, we could establish the following line of argument.

Chess is a finite game,® and so it is possible, in tbeory; to con-
struct a complete, finite game tree for chess, given the rules of the game.
The question of White’s having a winning strategy or not is a property
of this finite game tree. If for every counter Black makes, White has a
move that will lead to a win, then White has a winning strategy. Thus,
White’s having a winning strategy is a consequence of the rules of chess
that can be derived in a finite number of simple steps. One simply con-
structs the finite game tree using the rules of chess, and then checks
the tree for the existence of such a strategy. If an agent believes all the
logical consequences of his beliefs, then an agent who knows the rules of
chess will, by the reasoning just given, also know whether White has a

winning strategy or not.

The chess problem is thus a problem in representing reasoning about beliefs
in the face of resource limitations. The inference steps themselves are almost trivial;
it is a simple matter to show that a move is legal, and hence to construct positions
that follow via a legal move from a given position. But, although the individual
inferences are easy, the number of them required to figure out whether White has
a forced win is astronomical and beyond the computational abilities of any agent.
We call this behavior resource-limited incompleteness. A suitable model of belief
must be able to represent situations of this sort, in which an agent possesses the
inferential capability to derive some consequence of his beliefs, but simply does not

have the resources to do so.

8 The finiteness of chess is assured by the rule that, if 50 moves qccur without a pawn advance or
piece capture, the game is a draw.

Section 6.1: The Chess Problem 89

6.1.1 Solution to the Chess Problem

To approach this problem, we need to represent the game in a first-order
language. Because the ontology of chess involves rather complicated objects (pieces,
board positions, moves, histories of moves) we will not give a complete formalization,
but rather sketch in outline how this might be done in a tableau system. The basic
idea is to let the structure of the tableau mimic the structure of the game tree.
At each node in the tableau, there is an expression that indicates the depth of the
game tree search. By proscribing deductions below a fixed level of the tree, it is

possible to do a limited amount of reasoning about a chess position.

We use a multisorted first-order language L. for the base language Ly. The
key sorts will be those for players (Sy or Sp), moves, and boards. The particular
structure of the sort terms is not important for the solution of this problem, but
they should have the following information. A board contains the position of all
pieces, and a history of the moves that were made to get to that position. This is
important because we want to be able to find all legal moves from a given position;
to do this, we have to have the sequence of moves leading up to the position, since
legal moves can be defined only in terms of this sequence. For example, castling
can only occur once, even if a player returns to the position before the castle; more
importantly, there are no legal moves if 50 moves have been made without a capture
or pawn advancement (this is what makes chess a finite game). A move contains
enough information so that it is possible to compute all successor boards, that is,

those resulting from legal moves.

The game tree is a useful concept in exploring game-playing strategies. This
is a finite tree (for finite games like chess) whose nodes are board positions, whose
arcs are labeled by legal moves, and whose branches are all possible complete games.
A terminal node of the tree ends in either a win for White or Black, or a draw. The
game-theoretic value of a node for a player is either 1 (a win), 0 (a draw), or -1 (a

loss), based on whether that player can force a win or a draw, or his opponent can

90 Section 6.1: The Chess Problem

force 2 win. We use the predicate M(p, b, k, [,r) to mean that board b has value k for
player p. The argument { is a depth-of-search indicator, and shows the maximum
depth of the game tree that the value is based on. We include the argument r so
that M can represent heuristic information about the value of a node; when r =1, &
is the player’s sﬁbjective estimate of the value of the node, i.e., he has not searched
to all terminal nodes of the game tree. If r = t, then & is the game-theoretic value

of the board.

We take the formal interpretation of boards, players, and the M predicate
to be the game of chess, so that L. is a partially interpreted language. The rules
of the game of chess strictly specify what the game tree and its associated values
will be; hence, each predication M(p, b, &, 1,t) or its negation is a valid consequence
of these interpreta.ﬁons. Any agent who knows the rules of chess, and who has the
concept of game trees, will know the game-theoretic value of every node if his beliefs
are consequentially closed. In particular, he will believe either M(Sy, I,1,{,t) or
- M(Sw,I,1,1,t), where I is the initial board; and so he will know whether White

has an initial forced win or not.

We represent agents’ knowledge of chess by giving tableau rules for L;. The

rules T, presented below are one possible choice.

. I'=M(p,bk,1,7),A
I‘:’M(pablykl!llﬁrl)sA P=’M(p1 b21k2il21r2)1A T F:'M(p: bn:knalmrn):A’

where b1-b, are all the legal successor boards to b
p’s opponent is to move on b
k is the minimum of ky—kp,
! is 14 the maximum of {;-{,
ristiffall of ri—ry aret

Chl N

= M(p, bk l,r},A
P:"M(pablaklnlllrl)1A P:"M(p,bg,kg,l%f‘g),ﬂ I‘=>M(p1 bmkn:lmrn):A,

Cho:

Section 6.1; The Chess Problem 9]

where b;—by are all the legal successor boards to b
p is to move on b
k is the maximum of k1-&,
{ is 14+ the maximum of Iy-In
rist iff all of ri—ry aret

Chy: T = M(pbk,0,t),A, wherek =1if p has a checkmate
4 on his opponent on board b; k =0
if board b is a draw; and &k = —1 if

p’s opponent has a checkmate.

Chy: T = M(p, b, k,0,f),A, wherek isany number between —1
and 1
Chy axiomatizes nodes in the game tree where p’s opponent moves. The
value of such a node is the minimum of the values of its successor nodes. The
argument ! is the maximum depth of the subtree searched. r will be t only if all the
- subtrees have been searched to leaf nodes. Chz is similar to Chy, except p moves,

and the maximum of the successor values is chosen.

Chg is the rule for terminal nodes of the tree. Chy is a rule for heuristic
evaluation of any node: note that the last argument to M is f, which indicates that
a terminal node has not been reached. Each agent may have his own particular

heuristics for evaluating nonterminal nodes; we can accommodate this by changing
the values for k in Chy.

As an example of the use of these rules, consider the following tableau proof.

= M(Sy, b 1,2,t)

= M(S‘w’blslaost) = M(SIB;bS)er:t)
b4 Ch :M(Sw:b%l: 11t) b4
2 = M(Sw1b3;010: t) =>M(Sw:b4:1:01t)

X X (6.1)

Ch]_

This is a proof that the board b has a value 1 for White, searching to all terminal
nodes. Boards by, b2, and b3 all have value 1, so an application of rule Chy yields
that value 1 for & (it is Black’s turn to move on b). Boards b; and bs are terminal

nodes that are checkmates for White. There are two legal moves from board bo;

92 Section 6.1: The Chess Problem

one ends in a draw (b3}, the other in a win for White (bg). Since it is White’s turn

to move, rule Cho applies.

The structure of this tableau proof mimics exactly the structure of the
game tree from the board b. Indeed, for any subtree of the complete game tree
of chess whose root is the board b with value % for player p, there is a corresponding
proof of M(p,b,k,l,t) using the rules T.. In particular, if one of M(S5y,1,1,1,t)},
M(Sy, I1,0,1,t), or M(Sy,I,—1,1,t} is true, there is a proof of this fact. Hence
the rules T, are sufficient for a player to reason whether White has a forced initial
win or not, given an infinite resource bound for derivations. If we model agents as
having the rules T, so that T, C r(v) for every view v, each agent would know

this.

A simple modification of the rules Ch{ and Chq can restrict exploration of the
entire game tree, while still allowing agents to reason about game tree values using
the heuristic axioms Chy, or the terminal node axioms Chg if the game subtree
is small. All that is necessary is to add the condition that no rule is applicable
when the depth [is greater than some constant N. Sy, would still be able to reason
about the game to depths less than or equal to N, but he could go no further. In
this way, a deductively closed system can represent a resource-limited derivation

process. The revised rules are:

Chl:- Chy, with the condition that I < N.
Ch"z : Cho, with the condition that | < N.

With these rules, the proof of (6.1} would still go through for N > 2, but a proof

of M(Sy,I,1,1t) could not be found if N were low enough to stop search at a

reasonable level of the game tree.

The solution to the chess problem illustrates the ability of the deduction
model to represent resource bounds by the imposition of constraints on deduction

rules. There are other workable constraints for this problem besides depth cutoff:

Section 6.2: The Syllogism Problem 93

for example, the number of nodes in the tree being searched could be kept below
some minimum. Because the structure of proofs mimics the game tree, any cut-
off condition that is based on the game tree could be represented by appropriate

deduction rules.
6.2 The Syllogism Problem

Subjects are given the following two pairs of syllogistic premises:®

(1)a. Some of the beekeepers are artists.
b. None of the chemists are beekeepers.

(2)a. Some of the artists are beekeepers.
b. None of the beekeepers are chemists.

In the first case, most subjects failed to reach any valid conclusion; in
the second, most subjects responded correctly with the conclusion:

(2"} Some of the artists are not chemists.

The two sets of premises are logically equivalent, although the form of each
is different. In the second set of premises, the conclusion seems to follow almost
automa'tically, perhaps because it is so similar to the familiar transitivity inference
of equality: “if A is B, and B is C, then A is C.” Aristotle called syllogisms with
such obvious transitivity “perfect.” Johnson-Laird and Steedman [25] dubbed the
general dependence of the form of the conclusion on the form of the premises the
figural effect; in the above example the “figure” of the first set of premises is Eiﬁ,

A

that of the second set g The figural-effect theory says that conclusions of the

form C-A (e.g., none of the chemists are artists) are more likely in the first case,

while in the second A—C would be expected. Since there are no valid conclusions

® The syllogisms and experimental results are from Johnson-Laird and Steedman [25].

94 Section 6.2: The Syllogism Problem

| of the form C-A, the figural-effect theory correctly predicts that subjects will have

a harder time coming to a valid conclusion when presented with the first set of

premises.

Why is the syllogism problem a representation problem for belief, and how
does it differ from the chess problem? Let us suppose that a subject is asked to
believe that the premises of a syllogism are true. According to the symbol-processing
theory of belief, this means that, for each of the premises, he forms an internal string
of symbols that represents the meaning of the premise. It is not important what the
exact nature of the representation is, but it is important that it accurately reflect
the truth-conditions imposed by the premise, otherwise it would not be correct to
say that the subject actually believed the premise. So let us assume that the subject
has internal symbol strings that count as beliefs in the two premises of a syllogism.
I the subject comes to different conclusions when asked to believe the premise pairs
{1) and (2), then the symbol strings he uses as beliefs must be different in each case,
even though they have the same truth-conditions. The subject’s inferential process,
operating on the two different symbol strings, produces different conclusions for

each syllogism.

The important point to note in this symbol-processing reconstruction of the
syllogism problem is that, when the inference process employed by the subject is
syntactic—depending on the form of his beliefs rather than their truth-conditions—
then it might be incomplete from a logical point of view. The incompleteness of
syllogistic reasoning seems to be of a different sort from that of the chess problem,
which was resource-limited. Syllogisms involve only two simple premises; it seems
highly unlikely that the failure of subjects to conclude anything from the pair of
premises {1) is a consequence of limited space and time in which to draw conclu-
sions. Rather, this experiment suggests that the subject’s inferential process, even
when given adequate resources, is just not powerful enough in terms of its ability to

arrive at simple logical conclusions. To apply an analogy from high-school algebra:

Section 6.2: The Syllogism Problem 95

a student who is confronted with the equation £ 4+ a = b and asked to solve for
z won't be able to do so if he doesn’t know the rule that subtracting equals from
each side leaves the equation valid. It is not that the student lacks sufficient mental
resources to solve this problem; rather, his rules of inference for dealing with equa-
tional theories are logically incomplete. To contrast this type of incompleteness
with the resource-limited incompleteness described in the chess problem, we call it

fundamental logical incompleteness.

The evidence from psychological experiments is only suggestive of the hy-
pothesis that human belief inference is incomplete, because it involves the assump-
tion that an agent has an internal representation that counts for a belief in the facts
described by the English sentences of the syllogism. To the extent that we grant this
assumption (certain]y a controversial one in the psychological arena), the syllogism
problem is evidence for the hypothesis that, if one wants to model the behavior of
agents who possess beliefs but are imperfect reasoners, then it had better be the
case that the model can account for an agent’s not believing some “easy” logical
consequences of his beliefs, with respect to which resource limitations are not a
problem. This cannot be a characteristic of models of belief that, like the possible-

world model, use closure under logical implication to model reasoning about beliefs.

6.2.1 Solution to the Syllogism Problem

‘ To solve t.his problem, we need to find deduction rules that are sensitive,
in the right way, to the form of expression of the premises of a syllogism. In
addition, we want such a system of rules to be extensible to capture other types
¢l commonsense reasoning based on quantified statements, e.g., particularizing a
universal statement so that it applies to a given individual. This criterion is to
prevent trivial solutions in which the syllogistic evidence is accomodated, but at

the expense of positing a very rigid and unextensible framework.

96 Section 6.2: The Syllogism Problem

First, let us translate the syllogisms into a logical language. Consider a base

language Lg that contains three monadic predicates:

Az z is an artist.
Bz : z 15 a beekeeeper.
Cz: z 15 a chemist.

Using these predicates, the syllogisms can be phrased as sentences of Ls. There
are actually many ways to capture the semantic content of the syllogisms in L,
but we are trying to preserve something of their original syntax in the translation,
given the imperfect match between English and first-order languages. One fairly

straightforward translation is the following:

(1)a. 3z. Bz A Az Some of the beekeepers are artists.
b. Vz.Cz > -~Bz None of the chemists are beekeepers.

(2)a. 3z. Az A Bz Some of the artists are beekeepers.
b. Vz. Bz > -Cz None of the beekeepers are chemists.

(2") 3Jz. Az A =Cz Some of the artists are not chemists.

We have been careful to reflect the order in which classes appear in the original
syllogisms: note the difference between the premises of (1a} and (2a). Although
the semantic content of the logical translation is trivially the same, the order of the

conjuncts is different.

The reader may wish to verify that the conclusion actually does logically

follow from each of the premise sets. Using the rules Ty, here is a proof from the

Section 6.2: The Syllogism Problem 97

premises (1):

Jz. Az A Bz,Vz. Bx > -Cz = dz. Az A =Cz
Ae A Be,Vz. Br o =Cz = Jz. Az A ~Cz
Ae A Be,Be > =Ce = Jz. Az A =Cz
EIC Ae A Be, Be o —=Ce = Ae A =Ce
1 Ae, Be, Be o -Ce = Ae A —=(Ce
Ae, Be = Be, Ae A —Ce Ae, Be,Ce = Ae A —Ce
N C2 Az Be-Ce= =Ce Ae, Be,—~Ce = Ac

X x

Es
U,

I

The proof for premises (2) is similar, and is actually given as an example on page

45.

The rules Ty are thus too strong to model agents who fail to deduce all valid
conclusions from the syllogism premises. They are, for example, insensitive to the
order of conjuncts in quantified sentences like {1a) and (2a). In looking at the above
tableau, the inappropriateness of Ty seems to be that its rules are too fine-grained.
Rather than considering the two premise sentences as single entities, and drawing
an immediate conclusion from them, Ty breaks each sentence into finer and finer
components, until the atomic level is reached. At this point the character of the
original sentence is lost. In terms of absolute theorem-proving power, this is an
admirable property, because we don’t want the accidental expression of a sentence
to get in the way of its semantic content. However, in trying to model incomplete

syllogistic deduction, it is too powerful a method.

Our strategy in solving this problem is to chunk together several of the simple
steps of Tp into one deduction rule. By creating “macro” deduction rules of this
sort to handle quantified statements, we can arrive at a system that js incomplete
in precisely the way necessary to account for the syllogistic evidence of the figural
effect. Recall that, in general form, the figural effect says that a conclusion of the
form C-A is more likely to be drawn for a syllogism that has thé form E:g, if such

a conclusion is valid. The order that the premises are presented in is not important.

98 Section 6.2: The Syllogism Problem

In place of the quantification rules U and E| consider the following tableaux

schema:
Vi - I, 3z. a(z) A B(z), Vy.B(y) > v(y) = A
L' T, 3z.a(z) A B(z), V9. B(y) o 1(v), Iz.a(z) A4(z) = A
Vi - I, Ve a(z) > f(2), Vy-B(y) > 1(y) = &

27 T, Va.a(z) 5 B(s), V. B(y) > 1(v), Vz. a(z) > 4(z) = A

I, 3z.a(z) A B(2), 3y-Aly) A1ly) = A
T, dz. a{z) A B(z), Iy. B(y) A(y), Fz. afz) A (2} = A

Va:

These rules are a direct implementation of “perfect” syllogism reasoning,
where the order of the premises is disregarded (the antecedent of the sequent is
always a set, not a sequence). Only those valid conclusions that are sanctioned by

the figural effect are derived.

With the V-rules above, it can be proven that an agent will infer the valid
conclusions of perfect syllogisms, but no others. Let the logic B(Lg, r) be parame-
terized by Ly = Ls and 7(S1) = {Vq, Vo, V3}. We have the derivation:

[$1]3z. Az A Bz, [$1)Vz. Bz 5 =Cz = [51]3z. Az A ~Cxz
Vv Jz. Az A Bz, Vz. Bz > -Cxz =1 3z. Az A -Cxz
1 dz. Az ACz =1 3dz. Az A-Cxz
X

Ax

The desired inference takes place in a single deduction step. On the other hand, for
the premises (1), there is no V-rule that allows any conclusion to be derived. The

sentence

[51]3z. Bz A Az, [S1]Vz.Cz > - Bz = [51]3z. Az A -Cz

is not a theorem of B(L,,, 7).

The rules V; are compatible with other forms of reasoning about quantified

statements. One of the mosl common is to assign properties to particular individuals

Section 6.3: The Not-So-Wise-Man Problem 99

given a universal statement, as in the classic syllogism:

Socrates is a man
All men are mortal
Socrates is mortal

A tableau rule to implement this inference would be:

I', V2. a(z) o B(z), ale} = A
T, Vz.a(z) > B(z), afe), Ble) = A

V4:

4 makes no additional assumptions about the interaction of syllogisms whose

premises are two quantified statements.

It should not be supposed that the V-rules are being offered as a theory
of humman syllogistic reasonings. That is an ambitious task that, as we mentioned
in stating the problem initially, must necessarily involve explanations of the trans-
lation between linguistic utterances and mental structures, and an elaboration of
the internal mental processes that drive inferencing. The deduction model of be-
lief makes no statement about linguistic behavior, and its modeling capabilities are
descriptive rather than explanatory in any real sense. There is no claim here that
humans actually use a formal internal language, or have deductive rules similar to
the V-rules; Johnson-Laird [26] specifically denies that a syntactic deduction pro-
cess could be responsible for producing the figural effect. His arguments are based
on a somewhat impoverished notion of what type of processes can constitute de-
duction; certainly the deduction rules V; above are an adequate descriptive model
of the psychological evidence. We have shown that the deduction model can be
sensitive to the form of belief sentences, in ways that are parallel to the behavior of

human subjects doing syllogistic reasoning.

100 Section 6.3: The Not-So-Wise-Man Problem

6.3 The Not-So-Wise-Man Problem

A king, wishing to know which of his three advisors is the wisest,
paints a white dot on each of their foreheads, tells them there is at
least one white dot, and asks them to tell him the color of their own
spots. After a while the first replies that he doesn’t know; the second,
on hearing this, also says he doesn’t know. The third then responds,
“I also don’t know the color of my spot; but if the second of us were
wiser, I would know it.”

The not-so-wise-man problem is a variation of the classic Wise Man Puzzle,
which McCarthy [43] has used extensively as a test of models of knowledge. In the
classic version, the third wise man figures out from the replies of the other two that
his spot must be white. The “puzzle” part is to generate the reasoning employed
by the third wise man. The reasoning involved is really quite complex and hinges
on the ability of the wise men to reason about one anothers’ beliefs. To convince
themselves of this, readers who have never tried to solve it before may be interested

in attempting it before reading the solution below.

The solution to the Wise Man Puzzle is as follows: The third wise man
reasons: “Suppose my spot were black. Then the second of us would know
that his own spot was white, since he would know that, if it were black,
the first of us would have seen two black spots and would have known his
own spot’s color. Since both answered that they did not know their own

spot’s color, my spot must be white.”

The difficulty behind this puzzle seems to lie in the nature of the third wise
man’s reasoning about the first two’s beliefs. Not only must he pose a hypothetical
situation (“Suppose my spot were black”), but he must then reason within that
situation about what conclusions the second wise man would come to after hearing

the first wise man’s response. This in turn means that he must reason about

Section 6.3: The Not-So- Wise-Man Problem 101

the second wise man’s reasoning about the first wise man’s beliefs, as revealed by
his reply to the king. Reasoning about beliefs about beliefs about beliefs ... we
call reasoning about iterated or nested beliefs. It can quickly become confusing,
especially when there are conditions present concerning what an agent does not

believe. Compare:

(3)a. John believes that Sue believes some of the beekeepers
are artists.

b. John believes that Sue believes that none of the artists

are chemists. '

(4)a. John believes that Sue believes some of the beekeepers
are artists.
b. John doesn’t believe that Sue believes that some of the
‘beekeepers are not chemists.

In the case of (3), one of the correct, nontrivial conclusions that can be drawn is
that
(3") John believes that Sue believes that some of the bee-
keepers are not chemists.

This con;:lusion is not hard to draw, if one keeps in mind that it is essentially
the same as the conclusion of the simple syllogism (2}. An additional level of
complexity has been introduced by saying that it is John who believes that Sue
believes the premises of the syllogism. If John really believes this, it then seems
obvious that he should agree that she also believes the syllogism’s conclusion. Of
course we could devise other complications to block this result: perhaps John is a
male chauvinist and doesn’t believe women can solve even simple syllogisms. But
given good faith that Sue is like every other rational agent with good reasoning

abilities, the conclusion (3') seems inescapable.
A different story emerges with (4). At first glance, the valid conclusion

(4') John doesn’t believe that Sue believes that none of the
artists are chemists.

102 Section 6.3; The Not-So-Wise-Man Problem

doesn’t seem obvious or perhaps even plausible. One way to see that it is correct,
though, is to assume the opposite. If Jobn actually believed that Sue believes none
of the artists are chemists, it is possible to arrive at a contradiction. By the first
part of (4), according to John, Sue also believes some of the beekeepers are artists.
If John is a scholar of the psychological literature on syllogistic reasoning, then he
is aware of the high probability that Sue’s belief in the content of the two italicized
sentences means that Sue believes some of the beekeepers are not chemists. And this
contradicts the second part of {4), which says explicitly that John doesn’t believe
any such thing. The reader will note that this whole line of reasoning deﬁends on
arriving at a set of conditions that express what John believes that Sue believes,
without any not’s occurring before the believes. It seems intuitively clear that
reasoning about nested belief is much simpler when all the statements contain only

nonnegated occurrences of believes, as in (3).

In the Wise Man Puzzle, nested belief contributes to the complexity of the
reasoning in the same way as in (4)—to an even greater extent, in fact. The third
wise man must reason about what the second wise man doesn’t know (the color
of his own spot); in doing this, he must also reason about the second wise man’s
reasoning about what the third wise man does not know {the color of his own spot).
It is particularly annoying and troublesome to keep track of who believes what after
several occurrences of not-believing in a statement of nested belief. Because human
agents find it so difficult, the Wise Man Puzzle is thought to be a good test of the
competence of any mode] of belief. If one can state the solution to the puzzle within
the framework of Model X, so the reasoning goes, then Model X is at least good
enough to show what might conceivably be concluded by agents in complicated

situations involving nested beliefs.

Nested beliefs have a special importance for testing models of belief. If an
agent is a rational thinker and the belief model is a good one, it makes sense to

assume that the agent will use it as his own model of other agents’ beliefs, and that,

Section 6.3: The Not-So0-Wise-Man Problem 103

in turn, he will assume that these agents use the belief model as their model of other
agents’ beliefs, and so on ad infipitum. In Section 2.2.3 we called this assumption

the recursion property, and we axiomatized it explicitly in the system BK.

It is possible to solve the Wise Man Puzzle within the confines of belief
models that assume consequentially closed beliefs (see, e.g., McCarthy [43] or Sato
[61]). Such models, if they embody the recursion property, make the assumption
that every agent believes other agents’ beliefs are closed under logical consequence,
and so on to arbitrary depths of belief nesting. While this is an accurate assumption
if one is trying to model the competence of ideal agents (which is what the Wise
Man Puzzle seeks to verify), it cannot represent interesting ways in which reasoning
about complicated nested beliefs might fail for a less-than-ideal agent. This is the
import of the not-so-wise man problem. From the reply of the third wise man, it
appears that the second wise man lacks the ability to deduce all the consequences
of his beliefs. The representational problem posed is to devise interesting ways in
which the second wise man fails to be an ideal agent, and then show how the third

wise man can represent this failure and reply as he does.

In discussing the first two problems we have already mentioned several ways
in which an agent might be consequentially incomplete. The not-so-wise man prob-
lem seems to fall into the category of logical incompleteness, since the resource
requirements of inference in this case are not particularly acute. We can identify
at least two types (there may be more)} of incompleteness that are interesting here
and would be useful to represent. In one of these, the second wise man may have
incomplete inferential procedures for reasoning about the other wise men’s beliels,
especially if tricky combinations of not-believing are present, as in syllogism (4).
Suppose, for instance, the second wise man were to see a black spot on the third
wise man, and a white spot on the first wise man (this is the hypothetical situation
set up by the third wise man in solving the classic puzzle}. If he were an ideal

agent, he would conclude from the first wise man’s reply that his own spot must

104 Section 6.3: The Not-So-Wise-Man Problem

be white (by reasoning: if mine were not white, the first of us would have seen two
black spots and so claimed his own as white). But he may fail to do this because his
rules for reasoning about the beliefs of the first wise man simply are not powerful
enough. For example, he might never consider assuming that his spot was black,

and then asking himself what the first wise man would have said.

Another way in which the not-so-wise man might fail to draw conclusions is if
he were to make an erroneous decision as to what information might be relevant to
solving his problem. Although the Wise Man Puzzle has a fairly abstract setting, it
is reasonable to suppose that actual agents confronted with this problem would have
a fair number of extraneous beliefs that they would exclude from consideration. For
example, the not-so-wise man might be privy to the castle rumor mill, and therefore
believe that the first wise man was scheming to marry the King’s daughter. A very
large number of beliefs of this sort have no bearing on the problem at hand; but
would tend to use up valuable mental resources if they were given any serious
consideration. One can imagine an unsure agent who could never come to any
negative conclusions at all, because he would keep on considering more and more
possibilities for solving a problem. This agent’s reasoning might proceed as follows:
I can’t tell the color of my spot by looking at the other wise men. But maybe there’s
a mirror that shows my face. No, there’s no mirror. But maybe my brother wrote
the color on a slip of paper and handed it to me. No, there’s no slip of paper, and

my brother’s in Babylon. But maybe ...

In Section 5.2 we called the problem of specifying what beliefs an agent does
not have, or does not use in solving a given task, the problem of circumscriptive
ignorance. Without a solution to this representational problem, all agents will be
modeled as unsure agents—never able to reach a conclusion about what they don’t

believe, even tliough it is obvious when the set of relevant beliefs is circumscribed.

Of course, if an agent can circumscribe his beliefs, it is possible that he will

choose the wrong set of beliefs to circumscribe. The not-so-wise man may decide

Section 6.3: The Not-So-Wise-Man Problem 105

that the beliefs of the first wise man are not germane to the problem of figuring out
his own spot’s color. Thus, even though he has all the relevant information, and
even sufficiently powerful inference rules and adequate resources, he may fail to come
to a correct conclusion because he has circumscribed his beliefs in the wrong way.
We call this type of incompleteness relevance incompleteness. Modeling relevance
incompleteness (or having the third wise man do so) is an impossibility if it is
assumed that the beliefs of agents are consequentially complete: the set of beliefs
cannot be partitioned into those that are either relevant or not to a given problem;

all the consequences of beliefs are believed.

6.3.1 Solution to the Not-So- Wise Man Problem

For this problem we use a base language L, containing only the three prim-
itive propositional symbols P;, Po, and P3. P; expresses the proposition that wise
man S; has a white spot on his forehead. We also require a sequence of three situ-
ations, labeled {,, {5, and {3; every statement about belief will be with reference to
one of these situations, and we use the theory of situations developed in Section 5.4.
Finally, we need to state conditions of common belief, using the theory developed in
Section 5.3; and to express the hidden assumptions of the puzzle that circumscribe
the facts an agent has about his spot’s color, using the circumscription operator in-
troduced in Section 5.2. The nonintrospective logic family BK™ defined in Section

5.5 is appropriate for this problem.

In the initial situation ¢;, no one has spoken except the king, who has declared

that at least one spot is white. Axioms for this situation are

(W’l) PlAP2AP3

(W2) [So,t1](Pv Pav P3)

(W3) (F; 2 [S;, 4] Pi) A [So, 41](F; 2[5}, 61]Fy), i#j, j#0
(W4} (=F; 2[5, t4)=F) A [SOrtI](_'P > [S;4]-F), i#45 §#0

(C1) (S;: W2, s, W4, P;, P,)P; [S,,tl]P,, i#5k

106 Section 6.3: The Not-So-Wise-Man Problem

W1 describes the actual placement of the dots. W2 js the result of the king’s
utterance: it is a common belief that at least one spot is white. W3 and W4 are
schemata expressing the wise men’s observational abilities, including the fact that
everyone is aware of each other’s capabilities. C1 is a schema for circumscriptive
ignorance. The atom (S; : W2,W3, W4, P;, P)F; refers to the agent S;’s belief
subsystem, and is true if F; is derivable from the sentences W2, W3, W4, P;, and
P;. within the subsystem. The schema asserts that this is equivalent to S; believing
P; in the initial situation, the important part of the equivalence being that if P;
is not derivable from just those premises, then it is not a belief. Thus the only
information a wise man has about the color of his own spot is the three axioms

Wo~Wy, plus his observation of the other two wise men’s spots.

As an exercise of the formalism, especially the circumscription rules, let us

show that all agents are ignorant of the color of their own spot in the initial situation.

(6.2)
I Cl= ﬂ[S:':tllpi
In [va tl]Pf 2 (Sl' : W24, Pj,’Pk)P" = —‘[S,',fl].P,'
- Cirey (S; 1 W2-4, Py, Pp) Py = =[S;,] F; N = [Si, ta) Py, =[Sy,) P
W2-4, P;, Pt B o) Bi [Si,)P = [5;, 1] B;

X

We have omjtted some irrelevant sentences from the left side of sequents in this
tableau. To show that it closes, we must pick a set of decidable deduction rules
for the agent 5; so that the belief deduction operator can be evaluated. Actually,
we can prove that there is no set of sound deduction rules that will enable S; to
deduce FP; from W2, W3, W4, F;, and P, by showing that W2-4, P;, Py =; F;
is not provable in the saturated form of BK™, which is decidable (see Section 10).
This is done in the mechanically-derived proof of the Wise Man Puzzle in Appendix
A.

Iy

Section 6.3: The Not-So- Wise-Man Problem 107

After the first wise man has spoken, it becomes a common belief that he

does not know his own spot is white. The appropriate axiom is

(L1) {S1,t1]P1 > [So, 82][S1, t1]P1A
=[S81, t1)P1 2 [So, t2]-[S1, t1) Py

L1 is a learning axiom, in the sense that whatever belief 57 has about his own spot
in ¢; is learned by the others in {5. Note that they learn about the state of S;’s
beliefs as they existed in £;. By using L1 and the derivation (6.2), we can prove

that S;’s belief is a common belief in £5:

=[Sy, 4P, =[S, L] Pr 2 [So, t2]-[S1, [Py = [So, t2]-[S1, 8] Py

=[81, 4] P, [So, t2][S1,] P1 = [So, t2]~[S1, 4] Py -[S1, tlPL = -8, 4P, (S t2]- S 0] Py

x . x

With this result and that of (6.2), we can assert the following axiom about beliefs
in to:
(W5) =[S1]Py A [Sol=[S1] P

Given the state of common belief expressed by W5, we can write a new circum-

scriptive axiom for agents in {5:

(02) (Sz W2ﬂ1V31W4:W51P3)Pk)PlE[Ss: tz]P!’ i'_léJ:k

In #7, all the wise men are again ignorant of their own spot’s color; we could
prove this fact, showing that g+ C2 = =[S, 12]F;, in a manner similar to the
proof in {6.2). S, relates his failure to the others, and the new situation has the

additional axiom

(W6) =[S2, L] P2 A [So]—[52, &2] P2

The third wise man at this point does have sufficient cause to claim his spot

is white, but only if the second wise man is indeed wise, and the third wise man

I

108 ' Section 6.3: The Not-So-Wise-Man Problem

believes he is. To see how this comes about, let us prove it in the saturated form of
BK*. We will take the wise men to be powerful reasoners, and set 7(v) = Ty +A} +
Circy + Circ, for all views v. The sequent we wish to prove is W1-6 = [S3, {3]P;3.

(6.3)
Wi-6 = [S3, t3]P3

1 W2-6, Py, Py, P3 = [S3,3]P3

I “ W2-6, Py, Po, P3, P2 O [S3,81] Py = [S3,{3]P3
2 o -~ W2-6, Py, P, P3, [S3,11]P2 = [S3,83]P3
Py = P p ' W26, Py, Ps, P, [S3,t1]P2, P12 [S3,t1)P1 = [Ss, 3] Ps
2 W2-6, Py, Py, P3, [S3,41]1Pp, [S3,t1]P1 = [S3,£3]Ps

x P=P

A+
x K

W2-6, Pl \% P2 \% P3, sz, Pl =3 P3

This part of the proof is mostly bookkeeping. We have used some shortcuts,
omitting obvious steps and dropping sentences from either side of the sequent if

they are not going to be used.

We now must show that S3’s belief subsystem can prove Ps from the as-
sumptions W2-6 and from the belief that the other two wise men’s dots are white

(we are now using S3’s sequent =>3).

(6.4)
c W2—6, P; VPg VPs, Pz, Pl =>a Ps
! W26, P, P, Lo {Sg,hLP; =y P
) 01 W2‘6, P1, P?[Sg,hIPI =g Ps
P, =3 P I W28, P, Pz, [S3,81|P1, =Ps 2 [S3,t1]=Ps =3 Ps
X N, =3 P3, Py N W2-6, Py, Py, |52, 81}y, [S2, 1]=Ps =3 Ps
Py =3 P; A: W2-6, Py, Pz, [S2,11]P1, [S2, ta|~Ps =3 Ps, [Sa, 1] P2
X K W2_6, P; \4 Pg v Ps, P], '!Pg > 3o P2

Note the atom P3 on the right-hand side of the top sequent; it is equivalent to
—P3 on the left-hand side, i.e., the assumption that S3’s spot is black. The sequent
proof here mimics the third wise man’s reasoning, Suppose my spot were black
Through the observation axiom W4, which is a common belief, this assumption

means that S3 believes that So believes —-FP3. At this point, S3 begins to reason

Section 6.3: The Not-So-Wise-Man Problem 109

about S>’s beliefs. Since, by W6, the second wise man is unaware of the color of

his own spot, a contradiction will be derived if P> follows in So’s belief subsystem.

(6.5)
c W2_6, P; v PQ VP3. Pg, "Ps =r32 P2
1 W2-6, Py, =P3, ~Ps o [51,t1]-Ps =g Py
c W2-6, Py, =P, |S1,t1]"Ps =32 Po
1

~F5 =gz "PsI W2-6, P, <Py, [S1,04]-Fs, =Py 2|51, 11]-P; =32 Ps

x 2 =gy Po,P N W2-6, Py, =Ps, [51,8]=Ps, [S1,t1]~Pz =»35 P2
Py =32 P A.,z. W26, Py, =Ps, |S1,t1]-Ps, [S1, 1]~ P2 =32 Pa, [S1,4]Py, [S1}-P

N,
x K W2_ﬁ, Pl V.Pg VP3, —J?z, "1P3 =321 Pl

S5’s reasoning {in S3’s view) takes the assumption that the third wise man’s spot is
black and asks what the effect would be on the first wise man S). Since S is also
ignorant of the color of his own spot, a contradiction will ensue if the first wise man
can prove that his own spot is white, under the assumption ~P3. The remainder of

the proof is conducted in the view 321.

(6.6)
N W2-6, Pyv Pov P3, ~Py, °P3 =391 P
2 W2-6, PpvPov P&:P-ggl Pl: Po, P&
Py =301 Py, P, P3 P2 =321 P, P, P3 P3 =301 P1, P, P3
X X x

Do

In pursuing this proof, we have assumed that the second wise man is indeed
wise. There are several places in which, with slightly less powerful deduction rules
for the view 32, the proof would break down. Each of these corresponds to one of
the two types of incompleteness that we identified in the statement of the problem:

relevance incompleteness and fundamental logical incompleteness.

Consider first the notion that S; is not particularly good at reasoning about

what other agents do not believe, a case of fundamental logical incompleteness. One

110 Section 6.3: The Not-So- Wise-Man Problem

way to capture this would be to weaken the rule N3 in the following manuer:

I,op =32 A

.
N2 : I =30 p, A’

where p contains no belief operators
The modified rule Nj would not allow deductions about what agents do not know.
In particular, it would not allow the transfer of the sentence =[Sy, ¢;]P; to the left-

hand side of the sequent, a crucial step in the tableau (6.5) for the view =35.

Note that the modified rule N3 still allows deductions about what other
agents do believe. For instance, if Sy were asked whether S;’s believing P; followed
from his believing -Py and —P3, So would say “yes,” even with the logically incom-

plete rule N4 (as in tableau (6.6) above).

A more drastic case of logical incompleteness would result if So simply did
not reason about the beliefs of other agents at all. In that case, one would exclude
the rule A} from S5’s deduction structure. Again, the proof would not go through,

because the attachment rule could not be applied in the tableau (6.5).

The notion of relevance incompleteness emerges if the not-so-wise man So
does not consider all the information he has available to answer the king. For
example, he may think that the observations of other agents are not relevant to
the determination of his own spot, since the results of those observations are not
directly accessible to him. The observational axioms W3 and W4 enter into the
proof tableau (6.5) in two places. Both times the rule I is used to break statements
of the form p >[5, ¢]p into their component atoms. Preventing the decomposition of
W3 and W4 effectively prevents S2 from reasoning about the observations of other

agents. A weakened version of I for doing this is:

I''pog =32 A
I' =30 p,A T,q =3 A’

where p and g are both modal or
both nonmodal.

Section 6.3: The Not-So-Wise-Man Problem 111

This rule is actually weaker than required for the purpose we have in mind.
Consider the observation axiom —P3 > [Sy,¢1]-P3. There are two ways Sy could
use this axiom. If S5 believes —P3, he could conclude that Sy does also. This is not
the type of deduction we wish to prevent, since it means that Sp attributes beliefs
to other agents based on his own beliefs about the world. On the other hand, the
axiom - P, > [S,¢1]~FP2 is used in a conceptually different fashion. Ifere it is the
contrapositive implication: if S; actually does not believe ~Ps, then P must hold.
The way this shows up in the proof tableau (6.5) is that -P3 appears as an initial

assumption on the sequent W2-5, Py, ~P3 =>30 P», while Ps is a goal to be proved.

To capture the notion of using an implicational sentence in one direction
only, we would have to complicate the deduction rules by introducing asymmetry
between the left and right sides of the sequent. This is one of the major strategies
used by AI rule-based theorem provers (see Section 12.3). Rather than having
implicational rules of the form I, a typical rule-based system would use something

like the following:

I''pp2g=A

Pr:
' I'p,g,po>q=>A

The implicational sentence is used in one direction only in P/, to infer ¢ from p. If
it is desired to make contrapositive inferences, then the contrapositive form of the
implication must be included explicitly. Thus rules like P allow a degree of control

over the inference process to be embedded in the way the axioms are written.

In sum, we have shown that it is possible for the deduction model to represent
the situation in which the not-so-wise man has less than perfect reasoning ability,
preventing the third wise man from figuring out the color of his own spot. Both
relevance incompletenass and fundamental logical incompleteness can be captured

by using appropriate rules for 7(32).

112 Section 6.3: The Not-So- Wise-Man Problem

We can also represent the second part of the problem, in which the third wise
man says, I would know my spot’s color if the second wise man were wise. To do
this, we could have S3 reason about a hypothetical individual S} with a complete
set of rules. S3 could then show that he would know the color of his own spot,
whether S responded positively or negatively about his own spot’s color. In the
latter case, we have already shown how the reasoning proceeds, starting at tableau
(6.3). In the former case, S3’s spot would actually have to be black, and it is easy

for him to prove that this is so, given S9’s response.

7. Introspection

Agents can ask questions of their belief subsystems, and, in so doing, they
can form beliefs about the state of their own beliefs. Introspection about one’s own
beliefs is a special case of reasoning about other agents’ beliefs, the crucial difference
being that one has in hand an actual belief subsystem, rather than partial knowledge
of its contents. In this chapter we develop a model of introspective reasoning based
on the idea that a belief subsystem can issue a recursive call to itself in the course

of trving to prove a statement about its own beliefs.

As was the case for belief subsystems in general, we have an interest in
both descriptive and prescriptive aspects of a deduction model of introspection.
Descriptive adequacy is important for modeling the behavior of agents, especially
the introspective reasoning of human agents (Collins et al. |7] have made some

important psychological studies in this area).

The structure of this chapter is as follows. First, we give an explanatory
account of introspection by postulating an introspective machine that is an agent’s
model of his own beliefs. Varying amounts of self-knowledge can be represented
by imposing conditions on the introspective machine. In the second section, we
formalize this notion of introspection by using introspective deduction structures
to characterize the bounds of an agent’s self-beliefs. Finally, we axiomatize two
special cases of the introspective model with the logic families BS4 and BSS5, each

corresponding to a particular set of introspection conditions.

114 Section 7.1: The Introspective Machine

7.1 The Introspective Machine

Consider an arbitrary belief subsystem M of agent S. When presented with
a query, M operates by either matching the query against its base set, or applying
deduction rules to generate subqueries. During the course of this backward-chaining
process, it may generate a subquery that is a question about its own state, i.e., of
the form [S]p. Such 2 subquery can be answered by making a recursive call to
the belief subsystem again, posing the query p. Conceptually it is convenient to
think of this recursive call as a call on a new belief subsystem IM (the introspective
machine). The IM may have different characteristics than M—for instance, it may
have a much stricter resource bound than M, since it is only computing a part of
the answer to a larger query. A belief subsystem that relies on an introspective

machine to answer self-belief queries is called an introspective belief subsystem.

The process of defining an introspective machine can be iterated for IM,
producing another machine that is IM’s conception of its own beliefs, in accord
with the recursion property. In what follows we will mostly be concerned with the
interaction of M and IM; the ideas presented extend naturally to iterated levels, as

in the example given on page 123.

IM can return one of three answers: yes, no, and undecided. A query p that
is answered affirmatively by IM means that the agent S, upon introspecting on his
own beliefs, comes to the conclusion that he believes p—that is, [S]p is one of his
beliefs. A negative answer, on the other hand, means that he doesn't believe his
belief subsystem computes p, and so in this case =+[S]p is one of his beliefs. An
undecided answer leads to no conclusion either way: neither [S]p nor —[S]p is a
belief. Figure 7.1 illustrates the workings of the introspective machine by showing
the way in which M responds to the query [S|p. M poses the subquery p to the

introspective machine. if IM answers yes, then [S]p is accepted as a belief, and M

Section 7.1: The Introspective Machine 115

[S]p'?—b — p? —>
M M
ves —— — V€S -a—
no no
no und

Figure 7.1 An Introspective Belief Subsystem

also answers affirmatively. If IM answers either no or und, M cannot affirm [S]p as

one of its beliefs, and so must return no.

We can summarize the response of M to self-belief queries or subqueries of
the form [S]p and —[S]p by considering the behavior of the IM on p (M(p):xxx

means that M responds xxx to the query p).

IM(p):yes — M([S]p):yes, M(=[S]p):no
" IM(p):no — M([S]p):no, M(=[S]|p):yes (7.1)
IM(p):und — M([S]p):no, M(=[S]p):no

There are two important points to note about the above table. The first is that we
want to leave open the possibility that an agent has no knowledge of some of his
own beliefs, and this is where the answer und plays a crucial role. Normally, if a
query p cannot be deduced within a given resource bound by M, then it returns
the answer no. However, if IM doesn’t deduce a query p, there are two distinct
possibilities. In one case its associated machine M also would not deduce p, and

IM would be justified in returning no. But it may also happen that M would derive

116 Section 7.1: The Introspective Machine

p, since its resource bound may be greater than than of IM. For example, let the
query to M be the sentence a A [S]5. The control strategy of M might apply a rule
to break this sentence into two conjunctive subqueries, & and [§]3. The solution
of each subquery will consume some fractional part of M’s total computational
resources. So although M may reply affirmatively to the query g posed simpliciter,
it won’t be able to derive the subquery [S]#, because the IM has a significantly
tighter resource bound for 4. In failing to derive 3, the IM might reply no if it
could recognize that its stricter resource bounds were not the determining factor

for the failure; otherwise it might return und.

A second key point is that M may have self-beliefs by virtue of its base set of
sentences, as well as by querying IM. This is necessary to model the sort of reasoning
about self-belief that agents seem to do. To give an example (from Moore [52], pp.
5-G): an agent S might conclude that he doesn’t have an older brother by reasoning,
“if I had an older brother, my parents would surely have told me about it; since I
have no such knowledge, it must be the case that I don’t have one.” Let P be the
proposition that S has an older brother. We might represent the above inference
by attributing the sentence P > [S]P to S’s base set. Upon introspection, the agent
realizes that —[S]P is true, and hence that (by the contrapositive =[S]P > —P) that

—P is true.

The crucial element of this piece of reasoning is the presence of a sentence
involving self-belief in the base set of M. Since we cannot exclude such sentences,
there is always the possibility that they may supersede or conflict with self-belief
information from IM. So the cases in Table 7.1 in which M responds “no” to a self-
beliefl query are correct only if the IM is taken to be the sole source of information
about introspection. In this case, we call the introspective subsystem intrinsic; if

there are self-beliefs generated by the base set of M, we call it extrinsic.

Section 7.1: The Introspective Machine 117

l1i terms of belief sentences about the introspective system, we can convert

the responses of (7.1) into the following statements.

IM responds to p
yes no und
[S1(S]p [S]-[Slp —[SI[S]p*
S[S]=ISlp* [SISlp* —[S]-[STp *

(7.2)

For example, if IM responds und to p, then both [S][S]p and [S]-[S]p are false
of the introspective beliel subsystem of agent S, ie., S has no knowledge about
whether he believes p or not. The starred sentences are those that are true of
intrinsic subsystems only; in extrinsic subsystems, additional information from the

base sentences can override these conclusions.

An examination of the above table shows that, for intrinsic subsystems, there
is no reply from IM for which both [S][S]p and [S]-[S]p will be true. An intrinsic
introspective belief subsystem cannot have both [S]p and —[S]p as beliefs: it is

consistent with respect to self-beliefs.

THEOREM 7.1. The sentence —([S][S]p A [S]-[S]p) is true of every
intrinsic mtrospective belief subsystem of agent S.

Proof. By examination of (7.2) above.§

7.1.1 'Response Tables

If an introspective machine is to be an accurate reflection of its parent ma-
chine, there should be a correspondence between the responses of the two on the
same query. A response table can be used to portray the nature of this correspon-
dence {or lack of it). A response table consists of a column index for M’s answers,
and a row index for IM’s. A cross entry (x) in the table means that the indicated
responses for M and IM are simultaneously impossible for any query and any state

of M and IM. For example, consider the following table:

118 Section 7.1: The Introspective Machiue

M
p? ‘ yes no und
M yes X e
no X X

Table 7.1 Sample Response Table

-

An introspective beliel subsystem that conforms to this response table has the
behavior that IM always returns no to every query, no matter how M responds
(such a subsystem may not be very useful as a theory of intr-'ospection, but it
would certainly be easy to implement). The cross entries in the table place strong
restrictions on the linked behavior of the two machines. For instance, the fact that
there is a cross in the (yes, yes) entry means that there is no state of M and its
corresponding IM such that both M and IM would answer yes to a query. Note
that this relationship between M and IM holds over all possible base sets and rules

of M, as well as all possible queries.

Obviously, the ideal situation would be one in which the IM was a perfect

reflection of its M, and so would have the following response table.

—

™M
r? ‘ yes no und
M yes X X

no X X

Table 7.2 Perfect Response Table

Section 7.1: The Introspective Machine 119

Such a perfect IM would answer yes and no exactly when its associated M did, and
would never be undecided. However, a perfect IM is not always computationally
realizable. So we will study IM’s whose responses are less than perfect, both as
a feasible means of incorporating introspection into robot beliefs, and as a model
of existing agents’ performance. We now examine two important properties of

introspective belief subsystems: faithfulness and fulfillment.

7.1.2 Faithfulness

Consider a query p that IM answers positively. We would expect the asso-
ciated parent machine M to also answer yes if presented with p. An introspective
belief subsystem for which this is true of every query p is called positive faithful.
Similarly, if whenever IM responds no to a query, M also answers no, the subsys-
tem is said to be negative faithful. A totally faithful subsystem is one that is both
positive and negative faithful. Every definite answer returned by a totally faithful
IM correctly reflects the answer that its associated belief subsystem would return

to the same query.

The response table for positive faithfulness has a cross entry where M re-
sponds no and IM responds yes, since a positive faithful subsystem cannot exhibit

this behavior. A similar response table characterizes negative faithfulness.

120 Section 7.1: The Introspective Machine

a. Positive Faithfulness:
™
p? { yes no und
M yes
no X
b. Negative Faithfulness:
M
p? l ves no und
M yes X
no

Table 7.3 Response Table for Faithfulness

Every cross entry in the response table can be used to show that a certain
sentence about self-belief is true of the given introspective subsystem. For positive
faithfulness, the forbidden response pair is no from M and yesfrom IM. A no answer
from M on the query p means that p is not a belief, that is, =[S]p holds of M. If
the IM cannot answer yes, and the subsystem ié intrinsic, then [S]{S]p cannot be
true of M (see Table 7.2). This leads to the following theorem.

THEOREM 7.2. The sentence {S][S]p = {S]p is true of every positive
faithful intrinsic introspective belief subsystem of agent S.

Proof. By the argument above, =[S]p entails that [S][S]p is false for
intrinsic belief subsystems. Hence (—[S]p > —[S][S]p) = ([S][S]p >
[S]p) must hold for positive faithful intrinsic subsystems (but not
necessarily for extrinsic ones).l

Section 7.1: The Introspective Machine 121

For negative faithfulness, a similar argument shows that if [S]p is true of M,

[S]—[S]p cannot hold for an intrinsic subsystem. This yields the following theorem.

THEOREM 7.3. The sentence [S|-[S]p > —[S|p is true of every nega-
tive faithful intrinsic introspective belief subsystem of agent S.

7.1.3 Fulfillment

A totally faithful IM is guaranteed to give correct information about its
associated M when it returns a definite answer. On the other hand, a faithful IM
may return und on some queries, and so not give complete information about M.
If the IM always responds yes to queries that M answers affirmatively, then the
subsystem is called positive fulfilled. Similarly, if for every query that M answers
negatively, IM responds no, it is called negative fulfilled. A subsystem that is both
positive and negative fulfilled is perfect, since in this case IM responds exactly
the same as M. Here are the response tables for positive and negative fulfilled

subsystems.

122 Section 7.1: The Introspective Machine

a. Positive Fulfillment:

M
p? { ves no undecided
M yes X X
no
b. Negative Fulfillment:
1Y |
p? } yes no undecided
M yes
no X X

Table 7.4 Response Tables for Positive and Negative Fulfillment

Examination of the response tables leads to the following theorem about

fulfilled belief subsystems.

THEOREM 7.4. For positive fulfilled belief subsystems, the sentences
[Slp > [S]{S]p and [S]=[S]p > (~[S|p v [S]g) are true. For nega-
tive fulfilled belief subsystems, the sentences =[S|p o [S]|=[S]p and
[S]{S]p = [S] are true.

Proof. We prove this theorem for positive fulfillment; the proof for
negative fulfillment is similar. To show that [S]p > [S][S]p is true,
note that by Table 7.4(a) IM must respond yes to a query that M
answers yes. Hence if [S]p is true, [S][S]p will be also. For the second
sentence, it suffices to note that if |S]p is true, [S]p will be in the belief
set of M, and hence, if =[S]p is a belief, there will be a contradiction.
Thus the sentence [S]p > (—[S]-[S]|pv[S]q) is true, and this is logically
equivalent to [S]=[S]p o (=|Slp v [S]g).

Section 7.1: The Introspective Machine 123

It is easy to show that fulfillment implies faithfulness. A comparison of
the response tables for positive fulfillment and negative faithfulness shows that
the former is a strictly stronger condition: negative faithfulness allows the IM to
answer undecided when M responds affirmatively, which is disallowed by positive
fulfillment. Similarly, negative fulfillment implies positive faithfulness.

COROLLARY 7.5. Every positive fulfilled belief subsystem is negative

faithful, and every negative fulfilled subsystem is positive faithful. A
perfect subsystem is totally faithful

7.1.4 Summary

We can summarize the conditions of faithfulness and fulfillment for intro-

spective belief subsystems as follows.

positive faithfulness (pfa) IM(p):yes — M(p):yes
negative faithfulness (nfa) IM(p):no — M(p):no
positive fulfillment (pfu) M(p):yes — IM(p):yes
negative fulfillment (nfu) M(p):ino — IM(p):no

(7.3)

From Corollary 7.5, there are two constraints linking fulfillment and faith-
fulness. There are thus nine distinct combinations of these properties that can be

arranged in a lattice as shown in Figure 7.2.

The arrows indicate domination relations; the constraint pfu+nfu is thus
the strongest of the possible conditions on introspective belief, in the sense that
every introspective belief subsystem that obeys it also obeys every other possible
combination of the faithfulness and fulfillment constraints. Indeed, the condition
pfu+nfu represents an ideal, in the sense that an agent who obeyed it would have
complete and accurate knowledge of his own beliefs. Note that positively fulfilled
systems dominate negatively faithful ones, and negatively fulfilled systems dominate

positively faithful ones.

124 Section 7.1: ‘The Introspective Machine

none
fa nfa
pfu+nfa pfa+nfa nfu+pfa
pfu+pfa nfu+nfa
pfu+nfu
|

Figure 7.2 Lattice of Introspection Properties

Example. The use of introspective belief subsystems to model theories of human
belief will be illustrated with one example, drawn from Hintikka [21]. He argues that
if someone believes p, he also believes that he believes it {at least in the absence of
strict resource limitations on reasoning). This is our condition of positive fulfillment.
Hintikka goes on to argue that people will often have false ideas about their own

beliefs, e.g., an utterance of the form!?

z believes that he believes p although he does not believe (7.4)
it - ’

can be a true statement about the state of someone’s beliefs. In terms of the
introspective model, we would say that human belief subsystems are not positive

faithful {and hence not negative fulfilled).

There is an additional curjosity to Hintikka’s theory. Although the first level
of introspection is characterized as being positive fulfilled but not necessarily posi-

tive faithful, it appears that subsequent levels are considered to be totally fulfilled.

19 This is sentence 83 on page 125 of Hintikka [21].

Section 7.2: Introspective Deduction Structures 125

For example, the utterance

z believes the following: that he believes that he believes

p, although he does not believe it (7.5)

which is the statement of (7.4) as applied to an agent’s idea of himself, is taken to

be always false.

7.2 Introspective Deduction Structures

In this section we discuss the implementation of introspective machines in
terms of our by-now-standard mathematical abstraction, deduction structures. As
we will see, the inference rules for introspective structures have several peculiarities,
which must be taken into account when defining the appropriate belief logic axiom-
atization in the next section. Here, we show how the conditions of faithfulness and

fulfillment can be captured in a deduction structure framework.

7.2.1 Conditions on Introspective Structures

We introduce two introspective deduction structures, d;'; and d;;, that are

functionally related to the deduction structure d;. The idea here is to define the

boundaries of behavior of an IM with these structures, according to the following

condition:
yes, i § 4 25
IM(p) = no, ifB’d;. D; (7.6)
und, otherwise.

By this criterion, an agent’s view of his own beliel subsystem must lie somewhere

—; that is, he believes that his beliefs are at least those in

in the range from d;-';- to d;

bel(d;-';-), but no more than in bel(d;;). Obviously, we must have

bel(d}) C bel(d};) (7.7)

126 Section 7.2: Introspective Deduction Structures

in accord with the consistency condition of Theorem 7.1.

By imposing constraints on the relationship between d; and its associated
introspective structures, we can capture properties of the IM that were previously
discussed. Each of the conditions on introspective beliel subsystems obeying the
faithfulness and fulfillment properties, as given in (7.3}, can be translated into a
corresponding constraint on introspective deduction structures by using Equation

7.6. For example, consider the translation of positive faithfulness.

IM(p}):yes — M(p):yes (7.8)

The IM responding yes on p corresponds to p being in the belief set of the intro-

spective deduction structure d;';
pPC bel(d;’;) —pE bel(d;)

Since the above condition must hold for every query p, we have the following rela-

tionship between belief sets.

bel(d};) C bel(d;)

In a similar manner, we arrive at the following conditions on introspective

deduction structures, paralleling (7.3):

pfa: bel(d}) C bel(d;)
nfa: bel(d;) C bel(d;) (7.9)
pfu: bel(d;) C be (d)
nfu: bel(d;;) C bel(d;)

Section 7.2: Introspective Deduction Structures 127

The conditions of (7.9) must hold for arbitrary base sets of d;. As we have
assumed that the rules R;-t- and R;; of the introspective structures are fixed solely on
the basis of the rules of d;, it follows that, to enforce the introspection conditions,

the introspective rules must obey the following constraints:

pfa: R: E R,‘

nfa: R;C R
pfu: R;C R} (7.10)
nfu: R;C R;

it —

In addition, the consistence condition (7.7) entails the following constraint

on introspective rules:

RECR; (7.11)

7.2.2 Introspective Rules

Now we turn to the question of incorporating the introspective deduction
structures into rules of d;. It should be clear that any such rules we derive will not
be deduction rules, because they will not satisfy the criterion of provinciality. The
introspective deduction structures are defined by considering the base set of d; as

a whole, not just some subset of it.

In arriving at the nonintrospective logic BK in Section 3.4.1, we used the

following notion of derivability for deduction structures {Definition 3.8):

Bt a: Letd= (B, T). A sentence p is derivable from premises I"
indifandonlyif 7 [', B = p.

Definition 3.8 cannot be adapted to handle reasoning about introspection. The
basic reason is that its deductions all involve the sequent =>;, and the semantics of

this sequent are in terms of the truth of sentences, without any reference to their

128 Section 7.2: Introspective Deduction Structures

being beliefs of an agent. Consider, for example, trying to define a deduction rule
for positive fulfilled belief subsystems. With such a rule it should be possible to
derive [S;]p from a deduction structure d; that contains p. Given the notion of
derivability expressed above, [S;]p is derivable only if the sequent p =; [Si]p is
provable with the new deduction rule. But this is clearly an undesirable situation;
given the semantics of sequents, it justifies the inference that, whenever p is true,

S; believes it to be so (in the view 7).

In defining introspective rules of a deduction structure, it is necessary to
be able to refer to the introspective deduction structures d;-';- and d;; during the
derivation process. We now introduce two inference rules that make use of the

introspective deduction structures (the IN rules).

X, [St]r =i [S;]p, A

IN,:
P r B‘d;l; P
IN, - Z, [Silp = &
B_d.'_;' P

Remarks. These are inference rather than deduction rules, because of the presence
of the introspective deduction structures. These rules assert that the introspective
machine generates self-belief sentences for M according to the conditions in 7.6.
For example,.if p is not provable in d;, then by INy it is the case that —[S;]p is
true (recall that [S;]p on the left side of a true sequent means that it is false, hence
—[S;]p is true). We call IN, the positive introspection rule, and IN, the negative

introspection rule.

We now come to the main result of this section, which is to show that the
theorems about faithful and fulfilled introspective belief subsystems derived by con-

sidering response tables (Theorems 7.2, 7.3, and 7.4) are also theorems of deduction

Section 7.2: Introspective Deduction Structures 129

structures that contain the introspective rules IN and obey the corresponding con-
ditions (7.9).
THEOREM 7.6. Let the rules for a2 deduction structure d; include IN,,
IN,, N1, and No (of Ty). For each condition on introspective deduc-

tion structures given below, the corresponding condition on the belief
set of d; holds.

pfa* [S]pebelld;) — p€bel(d)
nfa:* -[Silp € bel(d;) — p & bel(d;)

pfu: p €bel(d;) — [S;]p € bel(d;)
-r[S,-]p S bEI(d,‘) — P E bel(d,-) or Vq. qe bel(di)
nfu: p€bel(d;) — ~—[S;]p € bel(d;)
[Si]lp € bel(d;) — p € bel(d;)

*The asterisk on pfa and nfa indicates that the implication holds for
intrinsic subsystems only.

Proof. pfa: If d; is intrinsic, then the presence of [S;]p in its belief
set must arise from derivation involving ar instance of IN:

= [Silp

IN
P B'd;i; p

The only way this tableau can close is if p € bel(d;-ti). By the condi-
tions in (7.9), this means that p € bel(d;).

nfa: If d; is intrinsic, then the presence of —[S;|p in its belief set must
arise from a derivations involving an instance of IN,:

= [Silp
N, = I2ilP
z ISidp =
IN,
B‘da 2

The only way this tableau can close is if p & bel(d;;). By the condi-
tions in (7.9), this means that p & bel(d;).

130 Section 7.3: Belief Logics for Introspective Belief Subsystems

pfu: We prove the first implication. By (7.9), bel(d;) C bel{d}),
so if p € bel(#;), we must have § .+ p. Then [Si|p € bel(d;) by the

following proof:
= [Silp

IN,
P B‘dﬁp

For the second implication, it suffices to note that bel(d;) C bel(d}) C
bel(d;) by (7.7), and hence the proof for nfa can be used.

nfu: We prove the first implication. By (7.9), bel(d;;) C bel(d;), so
if p & bel(d;), we must have f,~ p. Then —[S;]p € bel(d;) by the
following proof: "

= -[S;]p

[Silp =
B‘d‘_—‘, P

Ny

INy,

For the second implication, it suffices to note that bel(d7;) C bel(d};) C
bel(d;) by (7.7), and hence the proof for pfa can be used.§j

7.3 Belief Logics for Introspective Belief Subsystems

Having defined the introspective rules IN for deduction structures, we are
now in a position to axiomatize these structures in belief logic families. We would
like to arrive at one family for each of the different conditions on introspection pre-
sented in the lattice (7.2). Unfortunately, the language LB is simply not expressive
enough to allow this for the faithfulness conditions. Recall that faithfulness is a
property whereby M is constrained to reply to a query in the same manner as IM.

For instance, positive faithfulness enforces the following chain of implications:

IM(p):yes — M(p):yes — p € bel(d;)

The last statement, p € bel(d;), can be expressed in LB by asserting [S;]p. However,
there is no expression of LB that captures the meaning of IM(p):yes in a satisfactory

way when it is the antecedent of a conditional. It is not sufficient to state that

Section 7.3: Belief Logics for Introspective Belief Subsystems 131

[S;][S:]p, because this simply says that [S;]p is in bel(d;); and it could have gotten
there by being in the base set of d;, without any reference to IM. As a consequence,
-axiomatizations in the language LB that are sound and complete with respect to
faithful introspective subsystems all collapse into the nonintrospective family BK,

and hence do not really say anything about introspective behavior.

Introspective systems that satisfy the fulfillment conditions are amenable
to significant axiomatization. The chain of implication now looks like this in the

positive fulfilled case:

p €Ebel(d;) — M(p):yes
— IM(p):yes
— M([Si]p):yes
— |S{]p € bel(d;) .

(7.12)

This is a constraint on the appearance of two sentences in the belief set of d;, and
can be readily expressed in the language IB. Similarly, for negative fulfillment we

have:
pebel(d) — M(p)mo
— IM(p):no
— M(-[S]p):yes
— —[Si]p € bel(d;) .

(7.13)

As a consequence of this limitation of language, we shall consider only two
introspective logics formed from LB, called BS4 and and BS5 (collectively, BSn).
BS4 axiomatizes positive fulfilled subsystems, and BS5 totally fulfilled ones. These
are the most important logic families from the point of view of comparison with
normal modal logics that have been used to axiomatize knowledge and belief (see

Chapter 8).

132 Section 7.3: Belief Logics for Introspective Belief Subsystems

7.3.1 The Logic Families BSn

The logics BSn are characterized by the presence of the rule Ag,, a form of
the attachment rule A that has an introspective component. Like the family BK,
the families of BSn are parameterized by a base language Lg and a tableau rule

ensemble 7. The function 7() gives the tableau rules that are used by deduction

structures in the view v.
We now define two tableau rules characterizing introspective structures with
fulfillment properties.

Ao . LISIC=[SdeT
54 [ST,T =;

tee: © DISIC=[Sle,[S)AT
$5° ISIT,T = &, [Sile, [Si]A

Remarks. These rules have a natural interpretation in terms of the fulfillment
conditions (7.12) and (7.13). Positive fulfillment states that if ' are believed, then
so are [S;]I. Thus we are justified in using the latter to derive a in each of the
rules. Negative fulfillment states that if A are not believed, then —[S;]A are believed.
Hence we are justified in using the latter as assumptions in deriving « (recall that
a sentence p on the right of the sequent sign is equivalent to the assumption —p).
We might rewrite 4 55 more suggestively as

A - L, [SiIT = [Sile, [SiA 1T
S8 S[Se, [SIA, IS T = e

We form the two versions of BSn by incorporating each of the introspective

attachment rules.

DEFINITION 7.1. The systems BSn(Lg,7) are given by the following
posulates:

Section 7.3: Belief Logics for Introspective Belief Subsystems 133

= The first-order complete rules Ty.

= Rules 7(v) for each nonempty view v. A nec-
essary condition is that Cut*is admissible in
7(v), and

BS4 r(d%) I 7(¥)
BS5 (i) ~ 7(d)

Ag,: Agy for BS4, Ags for BS5.

The first two sets of rules (= and =>,) are the same as those of BK, except
that conditions are placed on the nature of introspective rules 7(¢), in accord with
Equation 7.10. In BS4, the relevant constraint is that, for positive fulfillment, the
rules 7(#7) must subsume 7(z). For the totally fulfilled system BS5, the introspective
rules must be equivalent to the original rules, so that 7(7) ~ T(z) Agy, is the belief

sequent form of the attachment rule A.
We now prove some theorems of these systems.

THEOREM 7.7. |-gsaBss [Silp = [Si][Silp

Proof.
[Silp = [Si][Si]p
[Si]p, p = [Silp
x

THEOREM 7.8. If Ny is admissible in 7({), then

FBsa,Bss [Si]-[Silp = —[Silp v [Silq

134 . Section 7.3: Belief Logics for Introspective Belief Subsystems

Proof.
D [Si]=[Sile = —[Silp v [Silg
Nl [S;]-1S;]p = —=[Si]p, [Silq
A ! [Si]p, [Si]-Si]e = [Sile
S5 [5i1p,n [S-I50p, 150 =1
[S,']p, D [Sl']—'[Sf]p =i q, {S;-]p
X
|

THEOREM 7.9. If Ny is admissible in 7(i), then

Fess —[Silp = [S:]-[Silp

Proof.
Ny - [Si]p = [Si]~[Silp
A = [S,-]—-[S;]p, [Sf]P
55 = 5p, [S1-(Se, ST
LTS =4 SIS [Sip
X
|

THEOREM 7.10. |gss [Sil[Silp = [Silp

Proof.)
. 4 [SilSilp = [Silp
55 18IS, [Sidp =i [Silp. p
X
1

Remarks. These theorems express the conditions on introspective deduction struc-
tures put forth in Theorem 7.6 in terms of the language of LB. Note that all these
are theorems of BS5, while only the first two are theorems of BS4. None of these

are theorems of the nonintrospective logic BK.

Section 7.3: Belief Logics for Introspective Belief Subsystems 135

The relationship between BS5, BS4, and BK can be summarized using the

notion of theory extension.

DEFINITION 7.2. A system @ extends a system Qo Iif every theorem
of the latter is a theorem of the former; in symbols this is @1 — Q.
A logic family Qq extends a family Qj if for every parameter Ly and

7, Qq(Lp, 7) — Qa(Lg, 7).

THEOREM 7.11. BS5— BS4 — BK

Proof. It should be clear that BS4(Ly, 7} extends BK(Lg, 7), because
every proof of the latter using Ag cae be duplicated in BS4 using
Agy. Similarly, BS5({Lg, 7) must extend BS4(Ly,7), because every
proof that uses Ag4 can be duplicated using Ags.l

8. Other Formal Approaches to Belief

How does the deduction model and its logic B compare to other formal models

and logics of belief? We examine two alternative approaches in this section:

1. Modal logics based on a Hintikka/Kripke possible-world se-
mantics, and

2. Tirst-order formalizations of belief, whose intended semantics
is sometimes obscure.

It is possible to classify the various approaches to representing belief in terms
of two independent parameters: the model of belief, and the language used to for-
malize the model. For the former, we distinguish symbol-processing models (of
which the deduction model is one) from possible-world models. The basic differ-
ence between these is that, in the former, an agents’ beliefs are characterized by
the computations an agent performs on syntactic objects [symbol strings) in some
internal language; in the latter, belief is taken to be a relation between an agent

and abstract propositions about the world.

The second parameter of belief representation is the language of formaliza-
tion. There are two that have typically been chosen: a modal language, which uses
modal expressions (e.g., [S;]p) to represent belief; and a first-order language, which
uses an ordinary predication (e.g., Bel(S;,€)). The syntactic difference between
these is that, in the modal expression [S;]p, p must be a sentence {or perhaps an
open formula) of the language, while in Bel(S;, ¢), e is a term. As far as the seman-

tics of the languages is concerned, the standard way to interpret the argument p of

138 Chapter 8: Other Formal Approaches to Belief

open formula) of the language, while in Bel(S;, e), e is a term. As far as the seman-
tics of the languages is concerned, the standard way to interpret the argument p of
a modal atom is as referring to an abstract proposition, while the argument e of
the Bel predicate is taken to refer to a concrete expression in some language—the
language of Bel is a metalanguage, and the language of e is its object langunage. If
the object language and metalanguage are taken to be the same (and e thus refers to
expressions in the language of Bel), the metalanguage is said to be self-referential;

otherwise it is hierarchical.

While these are the standard interpretations of the languages with regard to
belief models, other interpretations are possible. In Table 8.1, we list the various
approaches by model and language type. Each column gives the systems that have
been developed using a particular language type, e.g., the first column lists modal
systems (FO-H stands for first-order hierarchical, and FO-SR for first-order self-
referential}). Each row enumerates the systems developed for a given model type,
e.g., the first row lists systems whose intended interpretation is the possible-world

model.

Chapter 8: Other Formal Approaches to Belief 139

Language
Modal FO-H FO-SR
normal modal
logics
possible- | mintikka [21] system SB

world | NeCarthy [43], [44] omolige [32]

Sato [61]
Model Moore [51]

L 38
evequE[] “syntactic” logics

symbol- logic family McCarthy [46] Montague [49]
processing B(Lo, p) Crear}.r (8] Perlis [55]
Konolige [30]
Maida [41]

Table 8.1 Models and Languages

As the references show, the large majority of research has been concentrated
in modal logics for possible-world models, and first-order metalanguages for symbol-
processing models (the so-called “syntactic” logics). Because the models and lan-
guages of these two approaches are different, comparison is difficult. Montague [49]
attempted to recast normal modal logics in syntactic terms, but the resulting sys-
tems were inconsistent; his results are discussed in section 8.2.2 below. Konolige,

in unpublished notes [32], formulated a first-order system SB whose models were

| 140 Section 8.1: The Possible-World Model

possible worlds. This was the first research to show that there was a close cor-
respondence between possible-world and symbol-processing semantics, because the
language of SB could also be interpreted as having a symbol-processing semantics.
However, because of the syntactic complexity of the first-order languages, this line
of research was dropped in favor of that pursued in this thesis, namely, a modal
logic for the symbol-processing model. The advantage of a modal axiomatization for
comparison purposes is that the normal modal logics for possible-world semantics
are relatively well-developed and understood, especially regarding the intricacies of
introspection about belief. Hence it is possible to easily compare the theorems of B

with these systems, and evaluate their differences and similarities.

Finally, Levesque [39] has recently used the concept of a situation (Barwise
and Perry [2]) in developing a semantics for belief. Situations are like possible worlds
in that they give truthvalues to propositions, but unlike them in that not every
proposition need have a truth value. The model is axiomatized using a relevance

logic. We critique this approach along with the possible-world model.

3.1 The Possible-World Model

The possible-world model of belief was initially developed by Hintikka in
terms of sets of sentences he called model sets. Subsequent to Kripke’s [36] introduc-
tion of possif.)le worlds as a uniform semantics for various modal systems, Hintikka
[22] rephrased his work in these terms. The basic idea behind this approach is that
the beliefs of an agent are modeled as a set of possible worlds, namely, those that

are compatible with his beliefs. For example, an agent who believes the sentences

Some of the artists are beekeepers.
All of the beekeepers are chemists.

(8.1)

would have his beliefs represented as the set of possible worlds in which some artists

are beekeepers and all beekeepers are chemists.

Section 8.1: The Possible-World Model 141

In formal terms, possible worlds are a collection of objects at which proposi-
tions are true or false. One possible world, wyp, is singled out as the actual world; the
set of worlds compatible with an agent’s beliefs are given by a binary accessibility
relation R between possible worlds. Thus if world wy is compatible with his beliefs,

we would have wgRwy.

8.1.1 Representational Issues

In a possible world for which the sentences (8.1) are true, anything that is
a valid consequence of (8.1} must also be true. There can be no possible world in
which some artists are beekeepers, all beekeepers are chemists, and no artists are
chemists; such a world is a logical impossibility. If beliefs are compatible with a set of
possible worlds (i.e., true of each such possible world}, then every valid consequence
of those beliefs is also compatible with the set. Thus one of the properties of the
possible-world model is that an agent will believe all consequences of his beliefs—
the model is consequentially closed. Hintikka, recognizing this property as a serious
shortcoming of the model (his term was Jogical omniscience), claimed only that it
represented an idealized condition: an agent could justifiably believe any of the
logical consequences of his beliefs, although in any given situation he might have

only enough cognitive resources to derive a subset of them.

The assumption of consequential closure thus causes the possible-world model
to InaC(.:urately represent the actual reasoning ability of agents: it substitutes the
nonconiputational, semantic notion of logical implication as an approximation to
the computational processes that robot agents use. The example problems of Chap-
ter 6 ivere chosen to illustrate this point; they are not handled in any framework

that assumes consequential closure for agents.

We mention here one more important representational failure of the possible-

world model attributable to consequential closure, namely, the problem of represent-

142 Section 8.1: The Possible- World Model

ing the mental state of agents as described by belief reports in a natural language.l!

Suppose, for example, the state of John's beliefs is partially given by the sentence

John believes that, given the rules of chess, White has (8.2)
a forced initial win. '

The statement, given the rules of chess, White has a forced initial win is either true
in every possible world, or false in every possible world, so that either every possible
world is compatible with John’s beliefs, or none is. Thus (8.2) would be equivalent

in the possible-world model to one of the following belief reports:

a. John believest. (8.3)
b. John believes everything.)

Clearly this is wrong; if it turns out that John’s belief in White’s forced initial
win is correct, John has a good deal of information about chess, and we would not
want to equate it to the tautology t. On the other hand, if John’s belief is false
and no such strategy for White exists, it is not necessarily the case that all of his
heliefs about other aspects of the world are incoherent. Yet there are no possible
worlds compatible with a false belief, and so every proposition about the world
must be a belief. This particular problem stems from the possible-world treatment
of belief as a relation between an agent and a proposition (i.e., a set of possible
worlds). All logically equivalent ways of stating the same proposition, no matter
how complicated, count as a report of the same belief. By contrast, the deduction
mode] treats belief as a relation between an agent and the statement of a proposition,

so that two functionally different beliefs can have the same propositional content.

One interesting variation on the possible-world semantics has been developed
recently by Levesque [39]. He proposes to use the situations of Barwise and Perry

[2] instead of possible worlds. The latter can be considered a limiting case of the

11 A good account of the relative advantages of the general symbol-processing approach to repre-
senting belief reports can be found in Moore and Hendrix |53|, from which the following arguments
are derived.

Section 8.1: The Possible- World Model 143

former: in a situation, not every proposition need be true or false. As a result,
consequential closure is not a necessary property of this model, which Levesque
calls active belief. Indeed, there are models of active belief in which p and p > ¢ are
beliefs, but g is not. Further, it is also possible to have inconsistent beliefs without
everything being believed, so that p and —p are beliefs but g is not; or to have a
belief p while not believing its logical equivalent p v (g v -q}). So the objections to
the possible-world model that are based on consequential closure do not apply to
the active belief model, and it certainly deserves attention as an alternative to the
former. However, because of its recent origin, there are some significant omissions
in the theory: problems of beliel nesting and quantifying-in, for example, have not

yet been addressed.

There is a further concern that is inherent in the nature of the active belief
model, independent of the language used to express it. Like the possible-world
model, and despite the connotations of the word “active,” this model does not have
any notion of computation or reasoning process, something that we have taken as
basic to the concept of belief. That is, active belief allows us to state that an agent
believes p and p > g without forcing us to say that he believes g; but it does not offer
any insight into conditions under which an agent might actually conclude ¢ from the
original two beliefs. Indeed, the active beliefl model makes predications about some
conclusions; for example, if an agent believes —(pvg) he must believe ~pa—g, so that
it appears agents must know and use a part of DeMorgan’s law. Why should this
particular inference be singled out as special? It is possible to argue that there are
cases, similar to those of the algebra student in the introduction or the incomplete
syllogistic reasoner in Section 6.2, in which an agent would not know DeMorgan’s

law,

The shortcomings of a model that does not treat belief derivation as an
intrinsic part of belief are brought out when we examine theories of introspection.
In Chapter 7 we addressed introspection as a question of computaiion: how is it

possible for an agent to reflect upon his beliefs, and what are the limitations of

144 Section 8.1: The Possible- World Model

his knowledge in so doing? The computational or symbol-processing approach was

fruitful in allowing us to describe and prescribe the introspective behavior of an

agent.

In contrast, neither the possible-world model nor the active belief model
appears to offer a felicitous framework for addressing questions of introspection. As
far as the possible-world model is concerned, the accessibility relation R is a set-
theoretic construct divorced from the computational notion of reflective reasoning
about self-beliefs. In point of fact, it is possible to find mathematical constraints on
R that correspond to two of the types of introspective behavior, namely positive and
totally fulfilled systems; for example, the positive fulfillment condition is achieved if
R is a transitive relation. However, these constraints carry no explanatory weight or
intuitive justification from the point of view of a theory of introspection. They just
happen to be the constraints that make certain sentences about the introspective
behavior of an agent true, when these sentences are interpreted in a possible-world
model. No theory of introspection has yet been proposed for the active belief model,
but because of the nature of the model, it appears that it too must be axiomatic

rather than computational in nature.

8.1.2 Normal Modal Calculi for Belief and Knowledge

Kripke [36] originally proposed possible worlds as a unifying semantics for
the many diﬁ:erent axiomatic systems of modal logic then extant.1? Several of these
calculi have been used to represent belief and knowledge. The differences between
them center around whether knowledge or belief is being axiomatized, and what
assumptions are made about self-belief or self-knowledge. To simplify matters, we
assume that there is a single agent S, and hence confine ourselves to a single modal
operator: the construction Op is taken to have the intended meaning “the agent S

believes p,” O Op means “S believes that he believes p,” and so on.

12 A good survey of modal calculi can be found in Hughes and Cresswell [23]; the results we cite
below concerning normal modal calculi and their possible-world models come from here.

Section 8.1; The Possible- World Model 145

The possible-world semantics of modal systems works as follows. A model
consists of a set of worlds W, a distinguished world wg (the actual world), a binary
accessibility relation B : WxW, and a boolean valuation function. The valuation
function assigns a truth value to every propositional letter at every world. The
value of a modal atom Op is true at (or in) w if and only if p is true at every world
accessible from w via the relation R. A sentence p is satisfied by the model if and

only i it is true in wy.

The valuation function for possible-world can be contrasted with that of a
deduction structure model {vg, ¢, U, D) from Definition 4.5. Because we are dealing
“;ith a propositional language, ¢ and U are superfluous. vg is a valuation of propo-
sitional letters, corresponding to the valuation of propositi_onal letters at the actual
world wg. However, here the similarity ends; the semantics of the modal atoms is
completely different between the two models. In the case of possible-world models,
Op is interpreted as asserting that the proposition p is true at each of a set of
possible worlds. In the deduction model, the expression "p7, a syntactic object, is
present in the belief set of a deduction structure. This difference in interpretation

quite naturally reflects the difference in intended models.

The basic axiomatization of the possible-world model of belief (without in-

trospection) is the modal system K:

Al All tautologies
A2. O(p>q)>(0Op> Og)

4
Il Modus Ponens: from p and p o g, infer g. (84)

R2. Necessitation: from p infer Op

The axioms of schema A2 are called the distribution axioms; they allow modus
ponens to work under the scope of a belief operator. Any modal calculus that
uses modus ponens and necessin, and includes all tautologies and the distribution
axioms, is called a normal modal calculus. Normal modal calculi have the following

interesting property (see Boolos [3]): if p D ¢ is a theorem, then so is Op o Og.

146 Section 8.1: The Possible- World Model

Interpreting the modal operator O as belief, this asserts that whenever ¢ is implied
by p, an agent S who believes p will also believe q. As expected, normal modal

calculi assert consequential closure when the modal operator is interpreted as belief.

The system K is sound and complete with respect to possible-world models
whose accessibility relation R is unrestricted. Axioms can be added to K to char-
acterize different properties of belief; the ones we give below have possible-world
models whose accessibility relation is restricted in some way. For example, the

“knowledge schema”
KA. Op>op
is added when knowledge rather than belief is under consideration (this yields the

normal modal system T). KA characterizes possible-world models in which R is a

reflexive relation.

We are interested here in properties of introspection; two axioms that have

been used in this regard are the positive and negative introspection axiom schemata.

PL. Op>O0Op
NI -Op> O-DOp

Systems with these additional axiom schemata have the following names: weak S4

(or S4') is K+ PI, weak S5 (or S5') is S4+ NI, and S4 and S5 are the weak systems.

with the addition of KA. S4 systems have transitive R, and S5 systems a transitive

and symmetric R.

In terms of belief, positive introspection states that if an agent believes a
proposition, he believes that he believes it. Negative introspection has a similar
import for nonbelief: if an agent does not believe a proposition, he believes that he
doesn’t. Various combinations of these schemata have been proposed as a correct
formalization of introspection. Hintikka [21] argues that the knowledge and beliefs

of human agents satisfy PI but not NI. Moore [51] adopts Hintikka’s position in his

Section 8.1: The Possible-World Model 147

theory of knowledge and action, that is, he includes PI, but not NI Since he also
has the knowledge axiom Op > p, his system for a single agent is equivalent to the
modal system S4. By contrast, Levesque [38] proposes to give an agent complete
and accurate knowledge of his own beliefs, and so arrives at a system that is similar
to weak §5.1% Sato [61] gives Gentzen system axiomatizations for knowledge that
are isomorphic in the single-agent case to T', 54, and S5, leaving it to the reader’s

discretion to choose his own favorite introspection conditions.

8.1.3 The Correspondence Property

It is reasonable to ask how the deduction and possible-world models compare
in respects other than the assumption of consequential closure. We can phrase the
comparison in this manner: in the limit of sound and complete rules for deduc-
tion structures, is the deduction model significantly different from possible-world
models? Of course, the two models are composed of different entities {expressions
vs. propositions), so we can always use a language that distinguishes them, having
statements that are interpretable in one model and not the other. For example,
if we introduce an operator that refers to sentences in the base set of a deduction
structure, it be impossible to define a comparative possible-world semantics for this

operator, since there are no base sets in possible worlds.

So the answer to this question of correspondence depends on the type of
]a.ngua;ge used to talk about the models. Happily, we have chosen a modal language
with a belief operator for the deduction logic B, and a direct comparison to normal
modal logics is thus possible. Indeed, the ability to make comparisons was one
of the chief motivations for choosing 2 modal language for B. We now assert the

following unifying principle for the two approaches.

13 Levesque uses two additional axiom schemata: a consistency schema Op > =0 -p, and a schema
O{2p>p). The first schema is uselul in describing agents whose beliefs can never be contradictory,
because it says both p and —p cannot simultaneously be beliefs. The second schema is a theorem of
S5.

148 Section 8.1: The Possible- World Model

Correspondence Property. For every propositional modal logic of knowledge or
belief based on Kripke possible-world models, there exists a corresponding

deduction model logic family with an equivalent saturated logic.

The correspondence property simply says that possible-ﬁorld models are indistin-
guishable from saturated deduction models from the point of view of propositional
modal logics of belief—that is, in the limit of sound and complete deduction, the
logics of B are precisely the normal modal logics of belief. To prove this claim, we
will show below how each of the normal modal systems K, T, weak and strong S4

and .55 are equivalent to a saturated subfamily of B.

To the author’s knowledge, this is the first time that the symbol-processing
and possible-world approaches to belief have been shown to be comparable, in that
~ the possible-world model is equivalent to the limiting case of 2 symbol-processing
model with logically complete deduction. Although we state and prove the corre-
spondence here for the case of propositional languages only, it can be extended to

languages that allow quantifying-in (see Chapter 9).

In some respects the correspondence property is not a surprising result, be-
cause there is a close connection between theoremhood in a syntactic system (the
deduction model) and validity with respect to a set of possible worlds. Godel first
established the completeness of a first-order system relative to first-order models:
the theorems of the syntactic system are exactly the sentences valid in all models.
The situation here is slightly more complicated, because the language of deduction
structures contains modal operators, and the possible-world models have an acces-
sibility relation. Yet the connection remains: for every deduction structure d whose
rules are strong enough, there exists a corresponding possible-world model m such

that

Vw.|woRw — wl s] if and only if s € bel(d) .

Section 8.1; The Possible- World Model 149

What we mean by “strong enough” is that the deduction structure is saturated: its
rules are equivalent to those used by the outside observer to reason about agents’

belief subsystems.

The proof of the correspondence property will be carried through on syntactic
grounds. We show that each of the logics K, T, weak and strong S4 and S5 have
the same theorems as a particular deductive belief logic. Table 8.2 summarizes this

correspondence. Note that the knowledge versions of B are formed by the addition

of the rule Kp (see section 5.1).

Normal Modal Deduction Logic
Calculus Family

K BK
Belief weak 54 BS4
weak S5 BS5

T BK+ Ky

Knowledge 54 BS4 + K

S5 BS5 + Ky

Table 8.2 Deductive Belief Logics vs. Normal Modal Logics

- In proving the correspondence defined by the table, we will actually show
only that the theorems of S5 are identical to those of saturated BS5 4+ Ky, which
we call KSb;. The remaining proofs can be derived in a similar manner. First, we

prove some preliminary lemmas.

LEMMA 8.1. The rule Cut* is an admissible rule of any of the deduc-
tion logic families above.

Proof. 'The proof rests on the completeness results for these logics.
Since Cut* is propositionally sound, its addition will not destroy the
soundness of a system. For concreteness, take the system BK: all

150 Section 8.1: The Possible- World Model

theorems of BK + Cut* are valid. Because BK is complete (Theorem
4.6}, every valid sentence is a theorem of BK. Hence every theorem of
BK + Cut* is a theorem of BK, and Cut* must be admissible.ll

The following abbreviations are used: (Al') =g 71 A2 A .. (V) =4
yivayeVv...; (AOT) =4 O91A Ova...; etc

LEMMA 8.2. Let @ be a Hilbert system containing all tautologies
and the inference rule modus ponens. Suppose that, whenever the
sentences I' are true in a boolean valuation, the sentence p is also.
Then if fg v forall v €T, [p. p is called a tautologous
consequence {or TC} of T'.

Proof. The sentence 71 2 (72 > (... > p)) is a tautology, because this
is equivalent to =y v—y2v...vp, and by assumption in every boolean
valuation either one of I is false, or p is true. If }-g ; forall 4 €T,
then by enough applications of modus ponens the sentence p will be
derived.li

We will use this lemma frequently to shorten tedious proofs in Hilbert sys-
tems. For example, we will often apply the equivalences of DeMorgan’s law inside

complex expressions by invoking this lemma.
LEMMA 8.3. |g (AOT) = 0O(AT)

Proof. We will prove it for T' = {4, B}; the more general case is

similar,

1. AABoA Taut

2. OAAB)> DA 1,mec,A2,modus ponens
3. AABo B Taut

4. O(AAB)> OB 3,nec,A2,modus ponens
5. O(AAB)>(OAAOB) 24,TC

6. O(A>(B>(AAB))) Taut,nec

7. OA>O(B>(AAB)) 6,A2 modus ponens

8 O(B>(AAB))>(OB>0O(AAB) A2

9. O0A>(O0B>0O(4AB)) 7,8, TC
10. (DAAOB)> O(AAB) 9,TC

Section 8.1: The Possible- World Model 151

Because Lemma 8.3 is a theorem of K, it is also a theorem of every other

normal modal logic, because they all include the rules and axioms of K.

LEMMA 8.4. lgyg (AOT)) > O(A(QT))

Proof. We prove this lemma for the case of I' = {4, B}; the more
general case is similar.

1. OA>0OUA PI

2. OB-U0OOB PI

3. (DAAOB)>(00AADOOB) 1L,2,TC

4. (DAAOB)>0O(0AAOB) 3,Lemma 8.3, TC
B

This lemma also holds for S4, §5, and S5.
LEMMA 8.5. |gg (A(=OT)) > O(A(=03T))

Proof. We prove this lemma for the case of I' = {4, B}; the more
general case is similar. 4

1. m04>0-0A4 NI

2. -OB>0O-0OB NI

3. (-0AA-0OB)>(0-04A0~-0B) 1,2TC

4. (~0AA-OB)> O(-OAA-OB) 3,Lemma 8.3, TC
|

This lemma also holds for 55. We now prove the main theorem of this section.

THEOREM 8.6. |yss, I'= A ifand only if |g5 (Al') o (VA)

Proof. If part. We show that if p is a theorem of S5, then = pisa
theorem of saturated KS5. Because the deduction logic is saturated,
the rules of every view are the same. Hence we can dispense with the
index signs on sequents. For clarity, we give the rules of KS5;, below.

152 Section 8.1: The Possible-World Model

1. The propositional rules Typ.
L, 0O => Oa,0A T

2. ASs: OT T > g, Oa, 0A
3 Ko L,0r=A
- B0 TTONT = A

For Al: because Ty are first-order complete, every tautology is a
theorem of KS5,.

For A2:
c Olp>q)= Op> g
! D(p>¢),0Op=>>0qg
ASCE’ PDqp=>4q
1 7=4,p 5,7=9
» lX
For KA:
Op=p
Ko Tpp=p
»

PI and NI are Theorems 7.7 and 7.9, respectively.

For modus ponens, we show that the theorems = p of KS5; are
closed under this inference. Assume that = p and = p > ¢ have
closed tableaux, and consider the following instance of Cut*:

=9
=P p=9

By assumption the branch = p closes. Also by assumption, there is
a closed tableau for = p > ¢, and since the only applicable rule of
KS5; is I, there must be a closed tableaux for p = ¢. Thus there is
a closed tableaux for => q.

For necessitation, if = p is a theorem, then so is = Op, by one
application of Agg. This concludes the if part.

Only-if part. We show that if I' = A is a theorem of KS5,, (AT') o
(vA) is a theorem of S5. We do the proof here only for the case
in which both T' and A are nonempty; the other cases are similar.

Section 8.2: The Symbol-Processing Model 153

The proof proceeds by showing how to convert every step in a block
tableau of KS5; into a corresponding sequence of steps for a Hilbert
proof in 55.

Every axiom I',p = p,A of K55, is a tautology, and hence an
axiom of S§5. For the propositional rules of Tg, the top sequent is a
tautologous consequence of the bottom sequent or sequents, and for
each such rule there exists a correponding sequence of Hilbert proof
steps using A1 and modus ponens.

For Ky:
1. ((AX) A (AOT) A (AT)) o (vA) by assumption
2. ((AX) A (A0T) o (AOT) A (AD) KA, TC
3. ((AZ} A (AOT) o (vA) 1,2,TC

Note that this proof uses only KA and the boolean.axioms of S5, and
so holds for any normal modal logic that includes KA.

For Ags:

1. ({(AOT) A (A)) 2 (av Oav(vOA)) by assumption

2. (AD) > (~(AODN) vav dav (vOA)) ILTC

3. O[((aAT) > (=A@ veav Oav(vOA))] 2,nec

4. O(Al')> O(-(A0l)vav Oav(vOA)) 3,A2,modus ponens
5. O(al) > (3(A0T) > O(av Oav (vOA))) 4,A2,TC

6. O(All) > ((n0T) > O(av Oav(vOA))) 5,Lemma 8.4, TC
7. (AOT) > {(O0-0Oa> O(av{vOA))) 6,A2,Lemma 8.3,TC
8. (AOT) > (-Oa > 0(av(vOA))) 7,.Lemma 8.5, TC

9. (AOT) > (-Oea>(O-(vOA) > Oa)) 8 A2, TC
10. (A0 > (-0Oa > (~(vOA) > Oa)) 9,Lemma 8.5,TC
1. ((AZ) A (AOD) > (Qav (vOA) v (vII)) 10, TC

8.2 The Symbol-Processing Model

As we noted in the introduction, the symbol-processing model assumes that
belief arises as a result of computation over syntactic objects. The deduction model

of this thesis is a particular type of symbol-processing model, which we have chosen

154 Section 8.2: The Symbol-Processing Model

to formalize in a modal system B. There are a number of first-order formalizations
of belief or knowledge in the symbol-processing tradition that have been proposed
for Al systems. We have labeled these “syntactic” logics because their common
characteristic is to have terms whose intended meaning is an expression of some
object language. The object language is either a formal language (e.g., another first-
order language) as in Konolige [30], Perlis [55], and Maida [41], or an unspecified
“mental” language as in McCarthy [46] and Creary [8]. In this section we will first
review and respond to some general objections to the symbol-processing approach,

and then contrast the deduction model and B with the syntactic logics.

8.2.1 Objections to the Symbol-Processing Model

The first objection is that metalanguage systems are notationally burden-
some. A metalanguage contains, in addition to the normal complement of predicates
and terms for individuals, a set of terms that refer to expressions in the object lan-
guage. Hierarchical systems suffer from this overpopulation of terms to a greater
extent than self-referential systems, because they iterate the process: the object
language itself is a metalanguage for another object language. Thus the original
metalanguage might have a term c that refers to an object, a term ¢’ that refers to
¢, a term ¢ that refers to ¢/, and so on. Note that this objection to notation does

not apply to the system B, which is a modal system.

One an‘SWer to this objection is that the notation, although cumbersome,
has a natural interpretation. In McCarthy’s [46] work, for example, ¢’ is associated
with an agent’s mental concept of the object, and ¢” with another agent’s concept
of the first agent’s concept. The notation is complicated because the ideas being
expressed are inherently complicated and hierarchical, and the proliferation of terms

is necessary to make relevant distinctions.

Nevertheless, several authors have felt the notation to be overly burdensome,

and at least two proposals have been advanced to reduce it. The first is to allow

Section 8.2: The Symbol-Processing Model 155

an operator that creates terms referring to objects or other terms (the 5 function
of Konolige [30]), essentially a syntactic sugar device. This technique does not get
rid of the hierarchy of terms, but it does clear up some of the confusion associated
with which level of the hierarchy the term belongs to. A second technique, found iﬁ
Maida [41], is to make the interpretation of terms dependent on the context in which
they occur. However, the price to be paid is high: in standard first-order semantics
in. The nonstandard semantics of this approach has not been developed sufficiently
to consider it seriously as an alternative representation for belief: why abandon all

the results of first-order logic to achieve a single notational convenience?

An interesting objection to symbol-processing models in general has been

raised by Levesque [39]. He considers a belief report of the form

It is believed that either o or § is true, (8.5)

and notes that the order of & and 3 seems to be completely irrelevant to the mean-
ing of the report. Yet in the syntactic approach, he continues, this report must
be represented as either Bel(S,"a v 87) or Bel(S,"8 v a7). Presumably, these
represent different belief sets, one containing the sentence o v # and the other its
reverse. Levesque’s point is that the syntactic approach makes the left-right order
of disjuncts “semantically significant,” whereas, from the belief report evidence, it

appears that order is immaterial.

On the face of it this objection seems plausible, but it fails to hold upon
closer examination because its premises are false. First, consider that the whole
foundation of a symbol-processing approach is that a proposition’s form of expres-
ston is an important part of belief; we presented several arguments at the beginning
of this chapter as to why this is so. The important point here is that not all log-
ically equivalent ways of stating a proposition count as the same belief, because

the computations that operate on expressions may treat them differently. To take

156 Section 8.2: The Symbol-Processing Model

an example from Al planning systems, the sentences @ > § and —~a v 3 are often
treated differently by inferential mechanisms, most notably in rule-based deduction

systems (see Section 12.3).

If the form of expression is important, there might indeed be a distinction
between the two sentences v and v« in a belief set. Then again, there may not;
it depends on the property of the particular inference mechanisms employed in the
belief subsystem. For example, the tableau rules Tp make no distinction between
the two forms, and anything derivable with one will be derivable with the other.
So one answer to the objection is that the belief subsystem of agents is such that
either disjunct is equivalent to the other. Levesque calls this answer “semantically
unmotivated,” but it is not clear what he means. Certainly the semantic picture
presented is perfectly adequate: belief involves inference over sentences, and certain
sentences fall into the same equivalence class for these inferences. What Levesque
perhaps means by this phrase is that there is no semantic account that uses pos-
sible worlds or some similar set-theoretic construction; but this certainly isn’t a
failing of the symbol-processing model, which has no use for this type of semantical

machinery.

Finally, there seems to be a confusion between belief reports and the expres-
sions that actually are present in belief sets (an easy confusion to fall into, and one
which we were careful to point out in discussing the syllogism problem in Chapter
6). Why is it l;ecessary that the “or” of belief reports in English correspond to the
logical symbol “v” of a first-order language? On linguistic grounds the evidence is
very much against such a simple identification. A different internal language for the
agent might fare better in translation; after all, nothing in the symbol-processing
model forces us to use the standard first-order connectives, and we are free to pick
ones thal might be in better agreement with the assumed actual internal language of
agents. For example, the internal language might contain a symbol “LJ” whose single
argument was an unordered set of two elements. Then the inclusion of U({a, 8}) in

the belief set would be the single way of expressing the meaning of (8.5). The point

Section 8.2: The Symbol-Processing Model 157

is that the internal language might have only a single such mode of expression, but
the metalanguage itsell might have many ways of writing this expression; we might
even intend that the metalanguage expressions "av ™ and "o v 8" mean U({«, 8}).
Something along these lines has already been proposed by McCarthy [42] in his

abstract syntax proposal for the metalanguage.

8.2.2 Self-Referential Languages

A notion that has intrigued logicians since the inception of the Hilbert pro-
gram is the possibility of proving the consistency of first-order logic within its own
framework (see Kleene [28], pp. 247ff.). To do this, it is necessary to have terms
in the language that refer to expressions of the language. A method that has be-
come standard is to embed a theory of arithmetic in the language, and then assign
expressions of the language to unique numbers. We call a language of this sort self-
referential. 1t should be carefully noted that the language of B is not self-referential.
Even though we have stated that agents and the outside observer use the same lan-
guage, by this we simply mean that the language of the agents and the outside
observer use the same collection of primitive symbols and have the same rules of
formation. The sequence of languages in B is strictly hierarchical: the observer can
refer to expressions in agents’ belief subsystems, and the agents can refer to expres-
sions In their model of other agents belief subsystems, and so on; but a language in

the hierarchcy never refers to expressions in a language above it in the hierarchy.

The motivation for using a self-referential language to axiomatize belief is
twofold. First, there is an apparent lessening of the notational burden associated
with hierarchical languages. There is no need to have an infinite chain of lan-
guage/metalanguage pairs, each having terms referring to expressions in their pre-
decessor; all terms refer either to object or to expressions in the same language.
Offsetting this syntactic simplicity is an added referential complexity relative to
hierarchical systems. Terms that can refer to themselves are often hard to under-

stand, and intuitions about their consequences are prone to be misleading or wrong.

158 , Section 8.2: The Symbol-Processing Model

In this matter, as in many others about notational convenience, individual choice

seems to be the best arbiter.

A second more crucial motivation is that self-referential languages are more
expressive than hierarchical languages (the latter having no self-referencing terms),
and this difference might be important in representing belief. However, the evidence
to make this case is less than overwhelming. Perlis [56] cites the example of the

belief report

S has no religious beliefs (8.6)

as not being representable using a hierarchical language. This is simply false; the
expression Vz.[Rel(z) > —Bel(S,z)] will do nicely in the hierarchical system of
Konolige [30], where Rel is a predicate whose intended meaning is that its argument

contains significant reference to religious objects.14

On the other hand, there is good reason to assume at least a partially hier-
archical approach. Presumably an agent’s internal language would not contain any
references to the outside observer’s language, which we assume to be completely
removed from the environment the agent operates in. Hence there is no need for
the observer’s language, the language of B, to be self-referential. As far as the
agent himself is concerned, we have shown in the first half of this thesis how an
agent can model other agents, including himself, by assuming that they also have
belief subsystems similar to his own. In no part of this endeavor were we forced to
assume that the language was self-referential; indeed, in the place where we might
most expect it, namely in dealing with introspection, we arrived at a powerful and

natural theory without using self-referential statements.

14 By “significant” reference we mean to exclude such essential nonreligous beliefs as the tautology
“either there is a God or there isn't a God.”

Section 8.2: The Symbol-Processing Model 159

Even if, for whatever reasons, a self-referential approach is taken, there are
considerable axiomatic difficulties that must be overcome. Self-referential languages
prove peculiarly prone to inconsistency when intuitive axiomatizations of various
concepts are assumed. Godel was the first to show such an inconsistency: a first-
order self-referential system could correctly express its own consistency only on pain
of being inconsistent. And Tarski proved a similar result for the truth-conditions
of a self-referential language: if the desired axioms about truth were added to the
system, it would be inconsistent. A more recent result along these lines that bears
more directly on the present research comes from Montague [49],‘ who undertook
an investigation of modal concepts using a self-referential language. His method
was to introduce a predicate N (for necessity), similar to Bel, whose argument is
a term referring to an expression. For any modal system, it is possible to form a
corresponding system using N by simply writing the axiom schemata of the modal
system using N and terms referring to the appropriate sentences; for example, KA
would be expressed as N ("¢ 7) > ¢, where "¢ is a numeral referring to the expression

¢. Montague showed that the resulting first-order systems were inconsistent.

Although Montague was interested in the interpretation of N as necessity
rather than belief, his results can be applied to the standard modal systems dis-
cussed above in Section 8.1.2. In particular, the system T (the simplest normal
modal logic for knowledge) is inconsistent when expressed in a self-referential lan-
guage, and hence so are 54 and §5. Montague’s results do not imply that the weaker
systems K, S4' and S5, which omit KA, are inconsistent, and their consistency
is still an open question. Nevertheless his results are discouraging for those who
want to employ self-referential languages, because often it is desirable to consider a
formalization in which all beliefs are assumed to be true: for example, it is a useful

simplification in solving the Wise Man Puzzle and other puzzles of belief.

Perlis [55], in an attempt to recover from the negative results of Tarski and

Montague, has recently considered self-referential languages that use a modified

160 Section 8.2: The Symbol-Processing Model

truth-schema (first defined by Gilmore [15]) of the form
T("¢") = ¢*, (8.7)

where ¢* is ¢ with all occurrences of =T ("¢™) replaced by T'("—%"). The resulting
system can be shown to be consistent, whereas replacing ¢* with ¢ in (8.7) is

Tarski’s schema, which is inconsistent.

It is not clear what the relevance of this truth-schema is to the represen-
tation of belief. Perlis ([55], p. 11) claims that it makes the usual hierarchical
constructions for beliefl unnecessary , but this is not obvious prima facie, and the
evidence to back this claim is lacking. One immediate objection that comes to
mind is that even though some version of truth can be consistently axiomatized
using Gilmore’s schema, Montague’s results still hold for the necessity (or belief)
operator V. Presumably, the relevant modification would be to change the axiom
KA to N("¢") > ¢*, but the consistency of Montague’s axioms for necessity does
not follow from the consistency of the simple truth-schema (8.7), and remains an

open question.

A more subtle objection is that even if the consistency of a self-referential
axiomatization of belief 2 la Gilmore can be shown, there remains the problem of
explaining exactly what the starred construction ¢* means, and what its representa-
tional consequences are. The use of the * operator would replace some occurrences
of =Bel(5,7¢") with Bel(S, ¢7). This is a syntactic manipulation, and we might
ask what its semantic consequences are. Is consistency achieved here only at the
expense of throwing away most of the representational advantage vis-a-vis hierar-
chical systems that was originally expected? If it is, then the motivation for using

a sell-referential language in the first place is undermined.

Section 8.2: The Symbol-Processing Model 161

8.2.3 Syntactic Systems

In this section we review current syntactic approaches (both hierarchical and

self-referential), and compare them to the deduction model.

McCarthy [46] has presented some incomplete work in which individual con-
cepts are reified in a first-order logic. Exactly what these concepts are is left deliber-
ately vague, but on one reading they can be taken for the internal mental language
of a symbol-processing cognitive framework. He shows how the use of such concepts
can solve standard representational problems of knowledge and belief addressed by

the possible-world model, e.g., quantification into belief contexts.

A system that takes seriously the idea that agent’s beliefs can be modeled
as a theory in some first-order language is proposed by Konolige [30]. A first-order
metalanguage is used to axiomatize the provability relation of the object language.
To account for nested beliefs, the agent’s object language is itself viewed as a met-
alanguage for another object language, and so on, thereby creating a hierarchy of

metalanguage/object language pairs.

Perlis [55] presents a more psychologically oriented first-order theory that
contains axioms about long- and short-term memory. The ontology is that of an

internal mental language.

These axiomatic approaches are marred by two defects: lack of a coherent
formal model of belief, and computational inefficiency. Regarding the first one: the
vagueness of the intended model often makes it difficult to claim that the given
axioms are the correct ones; there is no formal mathematical model that is being
axiomatized.1® In arriving at the deduction model of belief, we have tried to be very
clear about what assumptions were being made in abstracting the model, how the

model could fail to portray belief subsystems accurately, and so on. In contrast, the

15 To some extent this criticism is not applicable to the formalism of Konolige in [30], because here
the intended beliefl model is explicitly stated to be a first-order theory.

162 Section 8.2: The Symbol-Processing Model

restrictions these syntactic systems place on belief subsystems are often obscure.
What type of reasoning processes operate to produce consequences of beliefs? How
are these processes invoked? What is the interaction of the belief subsystem with
other parts of the cognitive model? These types of questions are often begged by
simply writing axioms and then trying to convey an intuitive idea of their intended

content.

A second shortcoming is that efficiently mechanizable automatic proof meth-
ods for the syntactic axiomatizations are not provided. As we have mentioned, a
system that uses standard theorem-proving techniques on axioms about belief can
run into severe computational problems. Many of the assumptions that were made
in arriving at the deduction model were based on technical convenience and de-
ductive efficiency, the main one being the closure property. The end result is a
simple rule of inference, the attachment rule A, that has computationally attractive
realizations. On the other hand, formalizations that try to account for complex pro-
cedural interactions (as in Perlis’ [55] theory of long- and short-term memory), or
that use a metalanguage to simulate a proof procedure at the object language level

(as in Konolige [30]), have no obvious computationally efficient implementation.

Finally, the syntactic logics for belief have not been shown to be in confor-
mity with the correspondence property: the notion that, in some ideal limit, the
properties of these logics should be the same as those of logics based on the possible-
world model. The logic B actually does comply with this principle, and forms a link

between syntactic and possible-world formalizations of belief.

9. Quantifying In

Often we will want to say that an agent believes of an individual that he
has a certain property, without saying who that individual is. For example, the

sentence

there is a man whom John believes to be a spy (9.1)

states that John believes a particular individual is a spy, but we do not know which
one. In terms of the deduction model, we would characterize John’s mental state
as one in which the sentence Spy(n) was contained in his belief subsystem, where 5
is the name of the individual in question. There is no particular sentence that we

know to be in the belief subsystem, just one whose form is Spy(%).

The language LB is not sufficiently expressive to represent the partial in-
formation about John’s belief state contained in (9.1). This is because the sen-
tences that appear as arguments to the modal operators cannot have any unspec-
ified parts—they are always closed sentences, and refer to themselves. What we
really want to do is to say that there is some unspecified individual whose name is
part of a sentence that John believes. In the notation of B, this would be something
like

Jz. [John|Spy("z") (9.2)

164 Section 9.1: The Language of qB

where the quotes around z indicate that we mean to denote the name of the indi-
vidual z. Because r appears both inside and outside of a modal context, expres-
sions like (9.2) are referred to as having a quantified-in form. Expressions that are

quantified-in are not sentences of LB,

In this chapter we introduce the logic family qB whose language is an ex-
tension of B’s that permits quantifying in. The axiomatization of qB is similar to
that of B, and in particular the attachment rule suffers only minor modification.
The model: of qB will also be the same as those of B, and we will prove theorems
like those proven for B in Chapters 3 and 4, including soundness and completeness

results.

9.1 The Language of qB

The language L98 of qB is defined in a manner similar to the language LB
in Definition 3.6.

DEFINITION 9.1. Let {Sp,Sy...} be a countable set of agents, and Lg
a first-order base language (as given in Definition 3.1). A sentence of
198 based on Ly is defined recursively by the following rules.

1. Al formation rules of Ly are formation rules of LB,
2. If ¢ is a formula of LB, then [S;]¢ is also a formula.

The Ianguage LB reserves three parts of Ly for special purposes.

1. A countable subset of the constants of Ly, which are
- called identifiable constants or id constants.

2. For each constant a of Ly, a constant a® called its bullet
constant. In sentences of L9B, bullet constants may only
appear in the context of a modal operator.

3. A predicate I; of one argument for each agent.

Id constants are written as é&;. Individual constants that are not id
constants or bullet constants are called unspecific constants.

Section 9.1: The Language of qB 165

The difference in the definition of LB and L9B is in the second clause: for
L98 we allow ¢ appearing in the context of a modal atom to be a formula with
{ree variables, rather than just a closed sentence. Hence LB allows “quantified-in”

sentences, for example,

dz. [S;| Px

Vz. Pz > [S]Qz | (9:3)

which are not sentences of B.

9.1.1 Identifiable Constants

In the language L9B, we can no longer interpret the arguments of modal
atoms as sentences that stand for themselves, because they may contain variables
that have been quantified outside the context of the modal atom. There is a large

difference, for example, between the sentences

3z. [S;| Pz (9.4)

and

S;](3z. Pz) . (9.5)

The second sentence (which is a sentence of LB as well), states that the expression
Jz. Pz-is contained in S;’s belief subsystem. The first states that there is an ex-
pression of the form Pp in his belief subsystem, but that the exact expression is
dependent on the individual that is the referent of z. The formula ‘Pz’ inside the
modal operator, with the free variable z, is thus a schema that stands for an expres-
sion constructed out of the predicate symbol P and a constant term naming (for
S;) the individual referred to by z. Now, not just any term will do here. We need
a term that identifies the individual z for the agent S;. What we mean by “identi-
fies” is problematic, and depends on the problem domain under consideration. For

example, S; may believe that Noah’s ark was XXX cubits long without being able

166 Section 9.1: 'The Language of qB

to construct a similar ark, because he does not know how long a cubit is. The term
“XXX cubits” does not identify a particular distance measure for this agent. On
the other hand, if he believes that the ark was 120 feet long, then he would be able
to use a tape measure to lay out the beams and ribs and so on, so that the ark he
builds is the correct length. The term “120 feet” has a distinguished computational
meaning for the cognitive system of S;. Its presence in his belief subsystem enables
his other subsystems to carry out actions that implement his goals, whereas “XXX

cubits” does not.

Terms that have this special cognitive significance will be called identifiable
constants, or more simply id constants. They are a distinguished subset of the
individual constants of the language L8 What actually counts as an id constant
depends on the particular characteristics of the intended domain. But, in almost any
domain, two particular types of id constants are almost certain to be present: those
that are standard names for individuals, and those that are agent-relative. Moore
[51] illustrates the standard name concept with an example from an Al system that
analyzes electronic circuits (Stallman and Sussman, [64]). Identifiers are assigned
to components of the circuit, so that a transistor might be given the label Q301.
Q301 is a standard name that is known to both the system and its users, and can
be used to represent facts about that particular transistor; for example, the system

believes that the transistor is burned out if it believes that @301 is burned out.

St.a,nda,l.'d names are a very important mechanism for holding beliefs about
particular objects, but certainly not the only one. Another equally important class
of names are those that are agent-relative. By this we mean that the names are
descriptions that refer to an object when they are evaluated relative to an agent.
The best example is a term that has the effect of the pronoun “I,” that is, it always
refers to the agent itself. Other types of agent-relative descriptions are sure to be
important in domains that require a robot agent to perform actions. For example,
a robot might have a description of an object as “the table six feet in front of

me;” this description is an identifiable constant for the purpose of moving to the

Section 9.1: The Language of qB 167

table. Agent-relative names are, in general, not standard names, as this example
illustrates. Although “Q301” is a sufficient description for referring to a particular
transistor in any context, “the table six feet in front of me” is not. In fact, it may

pick out the wrong table, or no table at all, when used by a different agent.

In formal terms, an id constant can be thought of as a special name for
an individual in the language LB these names are reserved beforehand when we
define the language. A model of LB specifies a naming map from individuals to
id constants. This mapping may be only partial, in two senses: there may be
individuals for which no id constant is available, and there may be id constants
that are not names for any individual. However, the mapping is a function—only
one id constant can be associated with an individual. The idea is that in the real
world there are many individuals, and an agent has beliefs about only a subset of
these; hence the incomplete mapping from individuals to id constants. An agent
may also have beliefs about what he thinks are real individuals, but which are in
fact nonexistent; and so there can be id constants that are not the names of actual
individuals. The distinguished predicate I; picks out those individuals that actually

have associated id constants for the agent S;.

In terms of quantified-in sentences of the language L9B, id constants have
the following effect. If 3z.[S;| Pz is true, then there is an associated id constant
¢ given by the naming map such that the sentence P¢ is in S;’s belief subsystem
{and thus, I;z is true of the individual z}. On the other hand, the converse does
not necessarily hold: it may be the case that there is a sentence P¢ in S;’s belief
subsystem (with id constant &), but 3z.[S;]Pz cannot be asserted because there
is no actual individual whose identifiable name is é. Variables that are quantified

outside the scope of modal operators always range over the set of actual individuals.

It is interesting to compare the semantics of quantified-in variables given

here with typical possible-world accounts. Hintikka [21] noted that it is possible to

168 : Section 9.1: The Language of qB

interpret sentences of the form Jz.[5;] P as asserting that S; believes the property
P holds of an individual £ who is the same in every possible world compatible
with S;’s beliefs. Of course, this presupposes that we have an account of properties
and individuals in possible worlds, and so the semantics given in Section 8.1.2
must be extended. Kripke [36] gives a quantificational account of possible worlds,
assuming that at each world w there is an arbitrary universe Uy, of individuals, and
a denotation function mapping terms to members of this universe. For each n-place
predicate letter P", w contains the extension of P". Thus each possible world
specifies a valuation for all ordinary atoms. In the normal manner, this valuation
‘is extended to modal atoms by reference to the accessibility relation R; from these,

the valuation of any sentence at the world can be determined.

If we apply Hintikka’s interpretation of quantifying-in to this model, then
Jz.[S;| Pz asserts that there is some individual & in Uy, {the actual universe) such
that Pk is true in every world w compatible {for S;) with wg. That is, the quantified-
in variable ¢ picks out the same k in each compatible possible world. Now suppose
there is some constant ¢ in the language that refers to k& in every possible world;
such constants are called rigid designators by Kripke [37]. The existential sentence
is then equivalent to the sentence [S;]Pc, in which the quantified-in variable is
replaced by a rigid designator. Following Moore [51], it seems natural to identify
rigid designators with standard names, because the denotation of the latter is a fact
of language: ro matter what possible world it is interpreted in, a2 standard name

always refers to the same individual.

This account of quantifying-in now appears much closer to the interpretation
given for L8 using id constants. In the latter, 3z.[S;]Pz entails that there is
some id constant ¢ such that [S;]P¢ is true; when ¢ is a standard name, this is
exactly the same as the possible-world analysis. Of course, there are other ways
of believing something about a particular individual than having a standard name
for the individual; we mentioned agent-relative names, for instance. In this regard,

the deduction model appears to be more flexible in the type of id constants for

Section 9.1: The Language of qB 169

which it will sanction an interpretation. The deduction model allows us to talk
about terms of a particular sort in an agent’s belief subsystem, terms that may
have a special performative influence on the cognitive structure of an agent. On the
other hand, the denotation function associated with a possible world is specified
independently from the accessibility relation, and so cannot take into account any
agent-relative interpretation. In point of fact, nothing in the possible-world model
prevents a single possible world from being compatible with the beliefs of several
different agents. In such a world, any denotation of an agent-relative term such as

“I” would appear to do violence to our intuitions about reference.

A cautionary note must be added to this argument, because the issues of ref-
erence are exceedingly subtle, and we have not yet had any experience in exercising
the deduction model formalism in an actual robot agent; any claim for greater ex-
pressive power of quantifying-in in the deduction model must await further evidence
to refine the arguments presented. One established result is presented at the end
of this chapter, however. The language LB has an interpretation in the Kripkean
possible-world model to represent belief, and, when the system qB is restricted in
the appropriate way, it is sound and complete with respect to these models. Thus

the correspondence property holds for gB.

9.1.2 Bullet Constants

in this subsection we introduce the technical device of bullet constants for

dealing with unknown id constants.

Consider the rule of existential generalization (E; of Lp). Applying it to
sentence (9.4} yields the tableau

= dz. [S;| Pz

= [S:]Pa

(9.6)

in which the sentence Pa appears as the argument to the modal operator. However,

this conflicts with our interpretation of Pz as a schema in which £ must be replaced

170 Section 9.1: The Language of qB

by an id constant. An initially plausible solution is to specify that the substitution
constant @ be an id constant. This fails because our semantics forces a to be a
particular id constant; an arbitrary id constant may not even be the identifiable
name of a real individual. In substituting a constant a for the quantified-in variable
z, we require a means of specifying the id constant associated with the referent
of z. This is the purpose of bullet constants. Bullet cbnstant are used omly in
modal constants, and like free variables in these contexts, refer to id constants;
thus the bullet constant a® picks out the id constant associated with the referent
of a. Bullet constants are a technical device for keeping track of the origin of id

constants generated by substitution of variables in the course of a tableau proof.

We now define the substitution operation for sentences of L98. The only
difference from Definition 3.2 is in quantified-in atoms.
DEFINITION 9.2. Let « be a formula of L98. For every variable z and

individual constant a the formula af is given inductively by the rules
(1), (2), and (3) of Definition 3.2, together with the rule

[Si] e, if x does not appear free in «;
4. ([Sile): = < [Si]las, if a is a bullet constant;
l;a A [Si|laZ., otherwise.

Note that the bullet constant a® always picks out some id constant; the insertion
of the conjunct I;a is necessary to ensure that the referent of a actually has an

associated id constant in the naming map. An example of substitution is

(Pz A [S;]Pz)s = Pa A Lia A[S;]Pa®. (9.7)

Note that the intended semantics of the two sentences is the same. The one on the
left asserts that property P holds of an individual, that S; has a belief sentence
predicating P of the id constant associated with the individual, and that the indi-

vidual has the name a. The right-hand sentence asserts directly that the individual

Section 9.1: The Language of qB 171

named ¢ has the property P, that this individual has an associated id constant,
and that S; has a belief sentence predicating P of the id constant. The right-hand
side is not equivalent to the sentence Pa A [5;]Pa®, because there is nothing in the
latter qualifying a® as the id constant associated with the individual named a (for

example, S; may not believe such an individual exists, in which case I;a is false).

One unfortunate consequence of the complex substitution operation is that
we must be more careful in using predicate variables in proofs. Normally, when we
prove a “theorem” such as p > p, we have really constructed a proof schema in which
the variable p can be replaced by any sentence, and the result will be a theorem.
Although this will always be true of substitution for sentence variables, there are
difficulties in applying substitution to open formulas. Consider, for example, the
schema Vy.A(y) > Vz.I;z, where A(z) stands for a formula with free variable z. If
we substitute [S;]Py, then a valid sentence is obtained; if we subsitute [S;]Py or
just Py, the sentence is falsifiable. When using open schemata of this sort, it is

important to check carefully for any restrictions on substitutions.

9.1.3 Schematic Constants

The definition of substitution instances allows bullet constants to appear in
the argument to belief operators, as in (9.7). By the informal semantics we have
given, 4 bullet constant ¢* picks out an id constant of LI8 associated with the
individual referred to by a. However, both the referent of ¢ and the naming map
are not fixed by the language, and so we do not know exactly which id constant
a® specifies. This causes problems for the attachment rule, which relates belief
operators to deduction in an agent’s belief subsystem. For example, how can we
show that [S;|Pa® is valid, when we do not know exactly which sentence Pa® refers

to?

One answer is that [5;]Pa® will be valid if for every id constant &;, there is a

proof of P¢; for S;. It might be possible to axiomatize qB using this fact, where the

172 Section 9.1: The Language of qB

attachment rule for [S;]Pa® asked for the class of derivations §,(;) P¢; for each ;.
However, there are two problems with this approach. The most obvious one is that
it does not generate very efficient proof methods, since one must show a class of
belief derivations exist in order to find proofs of sentences involving modal atoms.
A second and less obvious complication is that it is difficult, if not impossible, to

find an axiomatization that is complete.

Instead of trying to prove the class of sentences PZ; on an individual basis,
we can try to find a particular id constant ¢ such that proving P¢ is tantamount to
proving P¢; for every ¢;. Then, by substituting ¢ for the bullet constant a® in the
modal atoms [S;]Pa®, we can prove that there is a belief derivation for any referent
of 2°® just by finding a derivation for the single sentence P¢. Of course, for this
scheme to work on a sentence with an arbitrary number of bullet constants, there
must be a countably infinite set of id constants that have the requisite property. By
placing a minor restriction on the deduction rules p(z) or each agent, we can ensure

that this is the case.

Consider an id constant ¢ and a deduction rule R in which it appears. Sup-
pose that for any other id constant & there is a deduction rule R’ that is exactly
the same as R, except that every occurrence of ¢ is replaced by &. A rule R with
this property is called schematic in &. Now suppose there is a countably infinite
subset of id constants ¢;, such that every rule R of the system R is schematic in
each ¢;. Then we call R schematic in ¢;, and we call the id constants Z; scbemati(;

constants and write them as EJ-.

The reason schematic constants are important is that any belief derivation
of a sentence containing a schematic constant ¢ can be converted into a proof of
the same sentence with the ¢ replaced by any other id constant. That this is true
should not be surprising, since by the very definition of schematic, we are able to

replace every step that contains ¢ by a step that contains the new constant.

Section 9.2: Sequent Systems for qB 173

Now demanding that a rule set be schematic in a countably infinite set of id
constants does not seem to be a particularly restrictive condition. We can think of
the schematic constants as being a special class of id constants whose interpretation
is not known. There can still be id constants, indeed an infinite number of them,
that are treated specially by the deduction rules. All we ask is that, in addition,

there be schematic constants.

The rules Ty are schematic in all constants, because they do not treat any of
them in a special way. Nonschematic constants occur when we consider deduction
rules for languages that are partially interpreted. A good example here would be
the term "me” denoting fhe agent himsell. Supposedly, some of an agent’s rules
would treat sentences involving this constant in a very different manner from other

sentences.

The bullet deletion transform of a set of formulz that contain bullet constants
is an important concept. The idea is that, in a set of expressions containing bullet

constants, we can replace these constants uniformly by schematic constants.

DEFINITION 9.3. Let I be a set of formulz from the language L98.
Leta}...ay be the bullet constants of Il, and ¢; .. . ¢n be id constants.
The bullet deletion transform of I1 is the set of formuize I1®* formed
by replacing each instance of af in I1 by its corresponding &;.

In a slight abuse of notation, we will often write I'®, o® to indicate the set {I", a}°.

9.2 Sequent Systems for qB

We turn now to the development of a sequent system axiomatization for ¢B.

DEFINITION 9.4. The system qB(Ly, p) is given by the following pos-
tulates. ‘

= The first-order complete rules T.

174 Section 9.2: Sequent Systems for qB

%, [SIT = [Sia, A
reg oli) a®

Boy A closed derivation operator for each agent S;

whose rules are schematic in a countably infinite

set of id constants ¢;.

The definition of qB is the same as that of B, with the exception of the
attachment rule gA and the restriction on p. It is impossible to have I and «
appear unmodified in belief derivation, because they will not be legal sentences if
they contain bullet constants, e.g., [S;|Pa® would yield formula Pae®, which is not a
sentence of L9B. Because the difference between g4 and A affects only quantified-
in statements (the bullet deletion transform of a sentence without bullet constants
is itself), it is trivial to show that B(Lg, p) and qB(Lg, p) have exactly the same

theorems from the language LB.

8.2.1 Some Theorems of qB

THEOREM 9.1. Suppose Pa B ,;) 3z.Pz (existential generalization)
holds for every constant a in agent S;’s belief subsystem. Then

Fqg 32. [S;)Pz = [S;]3z.Px

Proof.

3z.[S;| Pz = [S;|3z.Px

L;a,[Si|Pa® = [S;]3z.Pz
Pé B o(9) Jz.Pzx

Ey
gA

which closes by assumption. i

THEOREM 9.2.
Fqg 1Si]3z.Px = 3z.[S;|Px

Section 9.2: Sequent Systems for qB

Proof.

B [S;]32.Pz = 3z.[S;] Pz
[S{]3z.Pz = 3z.[S;] Pz, I;a A [S;]Pa®
[S;]3z.Pz = 3z.[S;] Pz, |S;]Pa® [S;|3z.Pz = 3z.[S;| Pz, La

Co

The right-hand branch will never close, because each time the exis-
tential rule E5 is used, a new conjunct involving I;z is created.|i

THEOREM 9.3.
FqB [Si}P¢c = 3z2.[S;|Pz

Proof.

. [S;]P¢ = 3z.[S;| Pz
B2 15]Pé= 3z.[81Pz, La A [5]Pa"
[S]Pé = J2. 5Pz, [S]Pa* |5]P¢ = 3z.[5]Pz, Ia

Co

The right-hand branch cannot close.ll

175

These three theorems show that quantifying into existential contexts has the

required properties; that is, if for some z an agent has the belief Pz, it is an easy

inference for him to believe 3x.Pz (Theorem 9.1}; but the converse is not true

(Theorem 9.2). More strongly, by Theorem 9.3 even if an agent has the belief P¢

for some id constant & from the point of view of an outside observer he still may

not have the belief Pz for some individual z, because there may be no naming map

from any real individual to the id constant ¢.

We now show that neither the Barcan formula Vz.[S;] Pz > [5;]Vz.Pz nor its

coverse hold in qB.

THEOREM 9.4.
Fqg Vz.[S;|Pz = [S|Vz.Pz

176 Section 9.3: Model Theory for qB

Proof.

Vz.[S;|Pr = [S;|Vz. Pz
I;a A |S;)Pa® = [S;|Vz.Px
I;a,|S;|Pa® = [S;|Vz.Pz

Pé B'p(;'] Vz.Pzx

U,
Cy
gA

This branch is open for sound belief deduction. i

THEOREM 9.5.

¥qe [S;V2.Pz = Vz.[S;|Pz

Proof.

[Si]Vz.Pz = Vz.[S;] Pz
[S;]Vz.Pz = [S;]Pa® A L;a
[S"]V.’B.P:E = [S{]Pd' [S,‘]VI.PI = Iiﬂ.

Uz
Ca

The right-hand branch cannot close.jj

Both these theorems are to be expected on the basis of the informal semantics
of quantified-in sentences. The Barcan formula fails to hold because there may be
some id constants that are not the names of any real individual, even if it is asserted
for every individual z that Pz is a belief. The converse fails to hold because there
may be some individual z that does not have an id name, and so Pz will not be
a belief even if all sentences of the form Pa are beliefs. Note the importance of
introducing the I-predicate in substitution. It is the presence of this predicate that

causes the right-hand branch in Theorems 9.2, 9.3, and 9.5 to remain open.

9.3 Model Theory for qB

We define qB(Lg, p)-models in a manner similar to B(Lg, p)-models, namely,
as a first-order valuation for Lg and a set of deduction structures from the classes
D(L, p(@)]. However, there are some changes. There is an additional element n;

for each agent S;, a naming function from individuals to id constants of L8, Note

Section 9.3: Model Theory for qB 177

that each n; is a total function from individuals to names. The partial nature of
the name map is preserved by the predicates I;, which have a special interpretation
in the model: for each agent S;, they pick out the individuals that may validly be
referred to by the naming function.
DEFINITION 9.5. A qB{Lg, p)-model is a tuple {vg, p, 9,U, D}, where
vg is an atomic valuation of EY, p is a mapping from constants to
elements of U, n is a sequence of total functions from elements of U
to id constants of L8, and D is a sequence consisting of one member

from each of the classes D(L, p(i)), i > 0. The rules p(i) must be
schematic under the countably infinite set of constants é;.

We wish to extend the definition of the valuation function V' to sentences
of the language L98. V will have the same behavior on sentences of LB as it
did previously, since every qB{Ly, p)-model is also a B(Lg, p)-model. Recall from
Definition 4.2 of V' that the part dealing with quantification subsitutes elements of
U for variables. We need to define the substitution of U-elements into the context

of modal operators, by appending the following rule to Definition 9.2:
4. ([Silo)f = [Silof

We thus allow elements of U to appear in the argument of belief operators.
The semantics of such elements is that they stand for the id constant given by the

naming map.

A model m defines an interpretation of a modal atom’s argument as a sen-
tence of LIB. For example, consider the atom [S;]P(k,a®); the subexpression
TP(k,a®)" refers to the sentence "P(&, &;)", where &, = ;(k), and &z = n;{p(a)).
Note that the id constant assigned to bullet terms depends on the interpretation
© of unspecific constants, as well as the naming function 5;. We write ﬂqh]];n to
indicate the interpretation of the argument to a modal operator [S;] in the model

m. We abbreviate the set {[v1]in, [72}in, - - .} 28 [[]in-

We now give the valuation function V for the language L8,

178 Section 9.3: Model Theory for qB

DEFINITION 9.6. Let m = {vg,0,n,U,D) be a qB(Lg, p)-model, and
s a sentence of L8, The valuation function V (s, m) is defined by the
following rules.

1. V{(s,m) is a first-order valuation that agrees with vy and
@ when s is nonmodal

2. V([S]p,m) = t iff [p]}, € bel(d;), where d; € D, and
V{I;k, m) =t for every element k of p.

Note that this definition of V does indeed subsume the older one, for [p}i, =
if [S;]p contains no bullet constants or elements of U. Also, because the naming map
is partial, there may be no image of an element k of U; if this is the case, then the
value of [Si]p is f, because I;k will be false.

A qB(Lg, p)-interpretation of the sentences of LB is an assignment of truth-
values produced by the valuation function with respect to some model. A sentence
of LB js qB(Lg, p)-satisfiable just in case it is true in some qB(Ly, p)-interpretation,
and qB(Ly, p)-valid exactly when it is true in all qB(Lg, p)-interpretations. We will
write m [g if V{s,m) =t, and qB{Lg, p} E 3 if 8 is qB(Lg, p)-valid.

THEOREM 9.6. Ifs is a sentence of LB based on Ly, and p is schematic,
then

aB(Lo,p) ks « B(Lg,p)ks.

Proof. Every qB{ Ly, p)-model contains a B(Lp, p)-model that has
the same behavior on sentences of LB. On the other hand, given
a B(Lg, p)-model in which p is schematic, adding any na,ming func-
tion ensemble g constructs a qB(Lo,p)-model that gives the same
valuation on sentences of LB, because there are no bullet constants or
quantified-in variables. |l

We have defined substitution in this complicated manner so that it obeys the
following important property. Suppose ¢ is a formula with a single free variable z,

such that m satisfies ¢ when free z is everywhere replaced by the element k of m:

Section 9.3: Model Theory for qB 179

m k ¢f. Let a be a constant whose interpretation in m is the element ¥, so that
©(a) = k. We would expect m to also satisfy the formula 3 when a was substituted

for free z: m [¥Z. This is indeed the case, as we now prove.

THEOREM 9.7. Let ¥ be a formula whose only free variable is z, and
let m | ¥, where k is an element of m. If a is a constant such that
p{a) = k, then m [7.

Proof Let ¢ be an atom appearing in v, and let ¢’ be this atom
under the substitution ¥f, ¢” under y. We will show that every
ground instance of ¢/ has the same truthvalue as that of ¢".

If ¢ is an ordinary atom P(y, z}, then, in any interpretation for which
‘P(a)’: k, we have vo(P(k,a)) = vo(P(k, k)), and hence vo{(¢%) =
vo{9"L)-

If ¢ is a modal atom [S;]a with free variables y and z, then ¢' =
[Silaf and ¢" = La A [Silaf.. Suppose Lk is true in m. Then
Iia is also true, and the valuation of ¢"{ is equal to the valuation
of [S,-]d;;‘:k. We know that n;(k}) = n;{¢{ae)), so that [az:k]fn =
ﬂaz’."’k {7, and hence ¢"¥ has the same value as ¢"}. On the other
hand, suppose Lk is false in m; then both ¢'{ and ¢"] are false.ll

9.3.1 Soundness and Completeness

We now prove the soundness and completeness of qB with respect to its
models, in much the same way that we proved these properties for B in Chapter 4.

Complications arise because of quantified-in variables and bullet constants.

LEMMA 9.8.
Ryye® — aBEI[SIT =[S

Proof. Suppose to the contrary that [S;]T' = [S;]a is not valid. Then
there is a model m that falsifies this sequent. If d; € D is the deduc-
tion structure of m for agent S;, then we must have [a]}, & bel(d;)
and [I'];, C bel(d;). But since there is a proof I'* ;) a® with p(i)

schematic, there is also a proof of III‘]in B-p(,-) [a]]:n Thus by the

180 Section 9.3: Model Theory for qB

closure property of §, [[a]],';n must be included in bel{d;), a contradic-
tion.f

The fact that the rules p(7) were schematic was an essential part of the proof
of this lemma. If they were not, the derivation I'* ol5) o* would be no guarantee
of [S;]IT = [S;]a being valid, since the belief derivation might have depended on

special id constants in the bullet deletion transform.
THEOREM 9.9. (Soundness of qB)

Fgg T=A — qBET=A

Proof. Consider a closed tableau for some theorem of qB. We would
like to show that the root of the tree is valid. We do this by showing
that the parent is valid whenever a set of daughters is valid, i.e., the
deduction rules preserve validity. Then if the axioms are valid, the
root node (and indeed every node in the tableau) must be valid.

For the first-order rules T, we know already that the propositional
rules preserve validity. The quantificational rules can involve substi-
tution into modal contexts; we use Theorem 9.7 to show that they
are sound. Consider the rule U;, and assume that the top sequent is
not valid, so that {I',Vz.¢, ~A} is satisfied by some qB-model m. But
then by Theorem 9.7, m k ¢} because m k ¢7 for every k in U, and
so the set {I',Vz.¢, ¢Z, A} is also satisfied by m. Hence the bottom
sequent is not valid.

For the rule Us, again assume that the top sequent is not valid,
so that {I',-Vz.4,—A} is satisfied by some m. Because —Vz.¢ is
equivalent to 3z.-¢, there is some constant k such that m —¢%.
Now the constant ¢ does not appear in any of the sentences of the set,
50 we can construct a model m' that is exactly the same as m, but
assign the interpretation ¢(a) = k. By Theorem 9.7, we must have
m' £ ~¢Z; thus the extended set {I',~Vz.¢,~¢Z,~A} is satisfied by
m', and the bottom sequent is not valid.

The proof for the existential rules is similar.

For the attachment rule ¢ A, the top sequent must be valid by Lemma
9.8.1 ‘

Section 9.3: Model Theory for qB 181

Remarks. We have proven the soundness of qB relative to a closed, schematic
derivation operator for each agent. Note that the condition of soundness on an

agent’s rules was not used in the proof of this theorem.

To prove completeness, we first prove a lemma that is the converse of Lemma

9.8.

LEMMA 9.10. (q-Attachment) LetZ =g {[S;]IY,—[S;]A'} be a (per-
haps denumerably infinite) set that is qB-unsatisfiable. Then for some
6§ € A and finiteT C T/, T* Bo(s) 0°-

Proof. Assume that I'* §/,;y 6° for all sentences § € A’ and all finite
subsets I’ C I'. Under this assumption we can construct 2 model m
that satisfies Z as follows. Choose an arbitrary vg and a denumerably
infinite universe U, and define p so that each constant refers to a
different individual of U. Suppose that the bullet deletion transform
converts a;- to the schematic constant ¢; for agent Sy; choose 5; such

that n;(y(e;)) = ¢é;. With these choices, we have [{I',A'}]}, =

{I’*,A’*}. Now comstruct a deduction structure d; =g¢ {[']i,, £(4));
this has the property that no member of [A’]}, is in bel(d;), because
by assumption there is no such belief derivation. Hence, for the qB-
model m =g {(vg,p,U,n,{... d;...}) we have m [[S;]v for each
1 €T, and m [[S;]6 for each 6§ € A’. This is a contradiction, since
it was assumed that no such model existed.}

COROLLARY 9.11. Forsomeéd € A,

qBF [SiT = [S]JA — T°B,;)06°

The attachment lemma is the main step in proving completeness, since it
relates the validity of sequents involving atomic belief sentences to their provability.
It is called an attachment lemma in analogy to techniques of semantic attachment,
in which the validity of a sentence is shown by attaching to the intended meaning of
the sentence in a partial model, and computing a truthvalue (see, e.g., Weyhrauch

[66]. In the attachment lemma, the validity of a sentence involving modal atoms

182 Section 9.4: Correspondence Property for qB

is determined by computation in its intended model, namely, deduction in a belief

subsystem.

This version of the attachment lemma is essentially the same as Lemma 4.4
for the logic B, except that belief derivation uses the bullet deletion transform to

eliminate bullet constants in favor of schematic constants.

THEOREM 9.12. (Completenessof qB) LetT and A be finite subsets
of I' and A’, respectively. Then

BET'=A" — |pT=A.

Proof. The proof is similar to that of Theorem 4.6. We define the
set W as the Hintikka set constructed from an open branch of the
tableau. W contains a (perhaps infinite) set Z of modal atoms [S;|T"}
and negations of modal atoms —[S;]A% for each agent S;. We will
show that each such set is qB-satisfiable.

Because the branch is open, there is no finite subset T'; C 1":. such
that T’} Boi) 6° Hence, by the contrapositive of the Q-Attachment

Lemma, the set {[S;]T'}, —[S;]Al} is satisfiable.§

The compactness of qB follows immediately from the completeness theorem.

COROLLARY 9.13. (Compactness of qB) If a set of sentences of L9B
is unsatisfiable, it has a finite unsatisfiable subset.

8.4 Correspondence Property for qB

We now interpret L9 in a Kripkean possible-world model, and prove that
saturated qB, restricted in an appropriate fashion, is sound and complete with
respect to this model. We restrict our attention here to the nonintrospective form
of gB, in which the belief derivation operator in gA is replaced with a sequent sign,
as in BK. The obvious modifications for introspective behavior can be found by

analogy with the systems BS4 and BS5 of Chapter 7.

Section 9.4: Correspondence Property for qB 183

9.4.1 Quantificational Kripke Models for Belief

We now define quantificational possible-world models {from Kripke [36]). A
model structure is a triple {wg, W, R}, where W is a set of worlds, wp is an element
of W (the real world}, and R is a binary relation on worlds. Kripke takes R to
be reflexive, but this makes every belief true (the schema [S;]p = p is valid), and
so is not assumed here. A model is a model structure together with va,lua,tion-
functions defined as follows. Associated with each world w is a universe U,;, an
atomic valuation v, of predicates, and a denotation map ¢, for constants. The
truth of any ordinary ground atom in w can be determined with v, and ¢y. Any
ordinary ground modal atom [S;]p is true in w just in case p is true in every w' such
that wRw'. Quantifiers are assumed to range over only those indivilduals present
in a world, so that Jz.Q(z) is true in a world w just in case Q(z) is true of some

individual in Uy.

Kripke models for quantified modal logic must be modified slightly to corre-
spond to our intuitions about belief. Note that P"(ky,... k) is assigned a truth-
value in w even when some of the kJ- are not in Uy. This isn’t quite what we would
like as an interpretation for belief. Consider the sentence 3z.[5;]Pz; it will be true
in a quantificational Kripke model that has Pk true in each compatible possible
world w, even if k is not a member of the universe Uy, of this world. It seems likely
that, if we assert that there is an individual such that 5; believes P of the individ-
nal, we ‘mean also that S; believes the individual to exist. This, in fact, corresponds
to the interpretation that we gave in Definition 9.6, where we assume that a belief
atom [S;] Pk is false unless k is an individual that S; is aware of, in the sense that

k is in the naming map (I;k is true).

The problem of interpreting Pk in a world w for which k does not exist can

be avoided if we always assume that either

(KRy) Uy C Uy

184 Section 9.4: Correspondence Property for qB

or
(KR2) Uy = Uy

for all worlds w and w' such that wRw'. The condition KRy assures us that every
individual quantified over in a world will be present in all compatible worlds, so that
the problem of assigning truthvalues to predicates involving individuals outside a
world’s universe does not arise. If the sentence 3z.[S;|Pz is true in w, then there
is an individual k¥ of Uy such that Pk is true in every compatible world w’; by
condition KR;, k will always be in U/,. Philosophically, KR; commits us to the
view that every agent is cognizant of, or can have beliefs about, all real individuals.
Formally, it makes the converse Barcan formula [S;]Vz.A(z) > Vz.[S;]A(z) valid,
because if A{k) is true of every individual in U, it is also true of every individual

in Uy.

The second condition, KR», is strictly stronger than the first, and might be
called the assumption of a common universe. There are two ways to interpret this
condition. The first is to take the view that every agent is cognizant of exactly
the real individuals. This is somewhat restrictive, because it assumes that agents
will not have any beliefs about possible, but nonexistent, individuals — such as
Santa Clause or griffins. An alternate interpretation is advanced by Moore [51]. He
assumes that the common universe includes all possible individuals as well as the
rea] ones. That is, 2 quantified variable ranges over any individuals that any agent
believes to exist, even if they are not actual individuals. Essentially this proposal
amounts to identifying the universe of every possible world as the set of all real and
possible individuals. Of course, the interpretation of ordinary quantified expressions
is now somewhat different: Jz.Qz states that some real or possible individual has
the property @, rather than being restricted to real individuals. A distinguished
existence predicate is necessary if we wish to differentiate the real from the possible

individuals in a world.

Section 9.4: Correspondence Property for qB 185

The common universe condition makes both the Barcan formula ¥z.[S;] A(z)>
[S;]Vz.A(z) and its converse valid in quantificational Kripke models. To see this for
the Barcan formula, suppose we assume that ¥z.[S;] A(z) is true in w, so that in ev-
ery compatible world w', Pk is true for all individuals & in Uy. Because Uy = Uy,

Vz.A(z) must be true in ' as well.

There are qB-analogs to each of the conditions KR; and KRs. If we take the
interpretation of I;k to mean that k is an individual that S; can have beliefs about,
then KR; would render I;k valid for every individual k. With this restriction, the
converse of the Barcan formula ([S;]Vz.A(z) = Vz.[S;]A(z)) becomes a theorem of
saturated gB. To see this, note that the right-hand branch in the tableau of Theorem

9.5 now closes, because I;a is true.

A further addition to qB is needed to accommodate the common universe
condition. Consider the open tableau that we used to show the invalidity of the

Barcan formula:

Vz.[S;|Pz = [S;]Vz.Pz

gl I;a A [S;|Pa® = [S;]Vz.Pz
. Al La,[S;]Pa* = [S;]Vz. Pz

PR, ;) Vo A(z)
X

This tableau fails to close because it is impossible to soundly infer that Vz.Pzx is
true when it is only known to be true of the individual ¢. However, given the
assumption of a common universe, we might argue as follows. Although & refers
to a single individual, it is an arbitrarily chosen individual. When its antecedent a
was chosen as the instantiation constant in the rule Uy, it was a new constant, and
hence could stand for any individual in the universe Uy,. Because Uy, = Uy for
any compatible world w, ¢ represents an arbitrarily chosen individual for the agent

S;. If P¢is true when ¢ is arbitrarily chosen, it must be true for all individuals.

186 Section 9.4: Correspondence Property for qB

In the following subsections we prove the first of these correspondences,
namely, that the saturated, nonintrospective version of qB with all I; predicates
identically true has the same theorems as the axiomatization of quantificational

Kripke models with condition KRj.

9.4.2 Interpreting qB in Possible Worlds

The first part of the correspondence proof is to show that the system qB,
when suitably interpreted, is sound with respect to the possible-world model. This
is a diffe’rent technique from the proof for the propositional case in Section 8.1.3,
where we simply showed that every proof in saturated B had a corresponding proof
in a normal modal logic. Here, the presence of bullet terms generated in the course
of a tableau proof makes this technique unsuitable, because these terms are not
present in axiomatizations of Kripke models. Also, interpreting L8 with respect
to Kripke models is a useful exercise because it gives insight into the nature of the

language.

To this end, we first note the following restrictions on qB, as discussed above.

This system is called qBK;.

1. The I; predicates are identically true, and can be eliminated
from the definition of substitution into modal contexts.

2. Belief derivation is treated as proof in a2 sequent system, and
all agent’s rules 7(v) are assumed to be the same as the outside
observer’s. The index on sequent signs can be eliminated, and
the attachment rule ¢gA becomes:

z, [S;]I-‘ = [Sf]a’: A
I = ao*

qAK

To the interpretation rules for quantificational Kripke models given in the
last section, we must add a rule for bullet constants. Let [S;]p be 2 closed belief atom

which contains a bullet constant a®, and let p’ be p with a® everywhere replaced by

Section 9.4: Correspondence Property for qB 187

¢©w(a). The belief atom is true in w if and only if the sentence p’ is true in every w/'
such that wRw'. From this and the previous rules, the truth of every sentence in
LB with respect to a world can be determined; we write w | s if s is true in w. A
sentence s is true in a model iff wg k s; it is valid iff it is true in every model. We
will use one fact about Kripke models: every valid sentence is true in every world

of every model (see Huges and Cresswell [23], page 351).
We now prove the soundness theorem.

THEOREM 9.14. The rules of qBK; are sound with respect to the
modified quantificational Kripke models.

Proof. 'The propositional rules of Ty are obviously sound. For the
quantificational rules, consider first Uy, and assume that the top se-
quent is not valid, so that {I',Vz.), A} is satisfied by some Kripke
model m. We wish to show that the sentence 7 is true in m. We must
show that for every atom ¢ in 9, wp k ¢7 iff wy | ¢7, where oy, = a.
It is obvious for ordinary atoms. For a modal atom ¢ =g [S;]p, we
have ¢ = [Si]pZ.. The valuation of a® is the element k such that
©ug (@) = k; hence [S;]p7s has the same value in wp as [S;]p}.

For the rule Uz, again assume that the top sequent is not valid, so
that {I', 7¥z.1, "A} is satisfied by some Kripke model m. Because
-Vz.¢ is equivalent to Jz.—1), there is some constant k such that
wg | —9§. Now the constant a does not appear in any of the sentences
of the set, so we can construct a model m’ that is exactly the same
as m, but assign the interpretation ¢y, (a] = k. By the arguments of
the previous paragraph, wj k —¢Z.

The proof for the existential rules is similar.

For the attachment rule, assume that the lower sequent I'* = o® is
valid. Let I and o be the sentences obtained by uniformly replacing
all schematic constants ¢; introduced by the bullet deletion operation
with different individuals k;. The sequent I = o' must be valid; if it
were not, there would be a model m whose wy falsified this sequent,
and we could then construct a model m’' with gow(:)(iij) = k; that

falsified I'* = a°.

Let m be an arbitrary model with actual world wg, and let a;- be

the bullet constants of I'* and a*. Form IV and o' from I'* and o® by
the substitution k; = @u,(a;). Because IV = o is valid, it must be

188 Section 9.4: Correspondence Property for qB

true in every world w compatible with wg. By the valuation rules for
bullet constants, [S;|I' = [S;]e must be valid in wy.l1

9.4.3 Completeness of qBK,

We prove the completeness of qBK, by showing that it has the same theorems
(over LB without bullet terms) as the axiomatization of quantificational Kripke
models with the KR; condition. The closure of a formula A is any sentence obtained
from A by prefixing universal quantifiers and modal operators, in any order. The

axioms are the closure of the following schemata (from Kripke [36]):

KRy : All tautologies.

KRy : [5;]Vz.A(z) > Vz.[S]|A(z)

KR3: [S;](A > B) o ([S,‘]A o [S,']B)

KRy : A>Vz. A, where z is not free in A.
KRy : Vz.(A> B) > (Vz2.A > Vz.B)
KRg: Vy.(Vz.A(z) 2 A(y))

The sole rule of inference is modus ponens; necessitation can be obtained as
a derived rule. We have modified Kripke’s original axioms by deleting the schema

[S;]A > A, and introducing the converse Barcan formula KRj.

In showing that the closures of the schemata are theorems in qBK,, the

following fact ‘will be useful.

LEMMA 9.15. Let T be a sentence of L8 that has the sentence p as
one of its subexpressions, such that a proof exists for T no matter
what p is. Let A{z) be a formula with the free variable z, which does
not occur in T. Let T' be T with p everywhere replaced by A(z).
Then [S;]T, Vz.T', and Vz.[S;]T' are all theorems of qBK,.

Proof. For [S;|T, the attachment rule yields the sequent = T, which
closes by assumption.

For Vz.T’, one application of U, yields the sequent = T”7. Because
there is a proof of T for arbitrary p, there is one for p replaced by A(a).

Section 9.4: Correspondence Property for qB 189

Note that this depends on the fact that qBK, does not introduce the
predicate I; in instantiations.

For Vz.[S;]T’, one application of Us yields the sequent = [S;]T"7,
and the attachment rule applies to give = T’z. Again, there is a
proof of this sequent.|i

We now prove the completeness of qBK, relative to quantificational Kripke

models for belief.

THEOREM 9.16. Every theorem of the Kripke KR system is a theorem
of qBK,.

Proof. From the proof of Theorem 8.6, we know that the theorems
of qBK; are closed under modus ponens, and include the tautologies.

We show that each of the KR schemata is a theorem of qBK, when
the schema variables A and B are taken to be sentences. By Lemma
9.15, substituting formulas with free variables and taking the closure
also yields theorems of qBK,.

For KR;y:
Uy [Si|Vz. Az = Vz.[S;] Az
[Si|Vz. Az = [5;] Aa®
94K U Vz. Az => A¢
1 TAes Ad
X

We leave the rest of the schemata as exercises for the reader.|

10. Proof Methods:
Davis-Putnam Generalized

for B+

We now turn to the investigation of practical automatic theorem-proving
methods for the various belief logics that have been defined. These fall into two
classes, depending on the expressiveness of the language: decision procedures for
the propositional case, and resolution-based systems for the quantified-in case. In
this chapter we confine ourselves to propositional logics, in which there is no quan-
tification. The method of Davis and Putnam [9] is an efficient decision procedure
for propdsitional logic, but is not a decision procedure for the modal logic B because
the modal atoms have a specific interpretation. We first generalize the procedure
to take into account predicates with specific interpretations. The generalization is

far from trivial, and an important result in its own right.

bnce we have developed the generalized Davis-Putnam method, we can ap-
ply it to the case of the logic B in which the belief derivation operation B-p(;) is
decidable for each agent ;. Because of the correspondence property, the method
will also work for propositional modal logics of belief based on possible-world mod-
els. The method has been implemented and is efficient, especially in the solution
to belief puzzles like the Wise Man Puzzle. The appendix contains a trace of the
computer proof of the so-called hard form of the puzzle (in which the ignorance of
the first two wise men is shown) using the saturated form of the logic B*. This

proof may be compared with the block tableau proof in Section 6.3.

192 Section 10.1: A Generalized Davis-Putnam Method

Given the importance and prevalence of current Al research in logics for
knowledge and belief, it is surprising that more attention has not been given to
developing efficient decision procedures for the propositional case. Decision pro-
cedures for propositional 7', $4, and S5 using tableau methods were developed
by Kripke [36], and, more recently, Sato [61] has done the same for extensions to
these logics that correspond to Bt. However, these procedures are not computa-
tionally efficient, mostly because of the combinatorics introduced by disjunction.
Any tableau system that makes indiscriminate use of rules such as €7 and D2 of
To, in which the tableau is split into two parts, suffers from this computational
problem. If there are n such splits, there will be 2" branches of the tableau, and

much redundant work will be done to show that each branch closes.

The Davis-Putnam method achieves its efficiency by delaying splits as much
as possible, and reducing to a minimum the number of sentences that are introduced
on each side of the split. When adapted to work for propositional modal languages,
the method retains these advantages. As far as the author knows, this is the first
computationally realistic decision procedure developed for a propositional modal

logic of belief.

10.1 A Generalized Davis-Putnam Method

The method of Davis and Putnam tests for the unsatisfiability of a finite set of
clauses of the propositional calculus. We will first define the notion of clause, literal,
and related éoncepts, then exhibit a generalized form of Davis-Putnam procedure
that can be used for languages whose predicates have particular interpretations; we
will use propositional modal languages as an example of this type. The general
procedure can be particularized to the unquantified form of BT (boolean combina-
tions of ground atoms) whenever there is an effective means of deciding the belief
derivation operation T' | p. Finally, we exhibit a complete decision procedure for

the saturated logic BY.

Section 10.1: A Generalized Davis-Putnam Method 193

10.1.1 Clause Form for Propositional Modal Languages

Clause form for a modal language without quantification is similar to that of
the propositional calculus, with all ground atoms treated as distinct propositional

variables.
DEFINITION 10.1. A literal Is either an atom (modal or ordinary) or
its negation. The complement of a positive literal p is —p, and the

complement of the negative literal —p is p. The complement of a literal
L is symbolized by ~ L.

A clause Is a finite set of literals interpreted as a disjunction. An
empty clause is false in every interpretation. A sentence is in conjunc-
tive normal form (CNF) if it is a conjunction of clauses.

At times we write clauses with disjunctions instead of set brackets, as in
Ly v Ly.... We use capital A to stand for a set of literals; the notation ¢ = L, A
or C = Lv A indicates a clause C consisting of the set {L} U A. The null clause is

written as W.

Every set of sentences of a propositional logic is equivalent to a set of clauses.
The clause form of a set of sentences is such an equivalent set of clauses.
DEFINITION 10.2. The clause form of a set of unquantified sentences
B is the set of clauses obtained by converting each sentence of B

to its conjunctive normal form (for example, using the procedure in
Robinson [59], pages 150-152).

Consider a typical sentence of unquantified B¥ that we wish to convert to

clause form.

(Pa v (=@ A [S1,¢]3z.Pz)) v {S : 3z.Px)@ (10.1)

Note that quantifiers can occur within the scope of modal atoms, but the basic
structure of (10.1) is a boolean combination of ground atoms. In any interpretation
of BY, each atom has a truthvalue, and the truthvalue of the whole sentence is

determined by the fact that the interpretation is a boolean valuation. In any boolean

154 Section 10.1: A Generalized Davis-Putnam Method

valuation, certain manipulations preserve logical equivalence; for example, one can

distribute disjunction through conjunction, and obtain

((Pav Q) A (Pav|S1,t1]32.Pz)) v (S : 3z.Pz)Q . (10.2)

This sentence has the same truthvalue as (10.2). Applying the distribution

rule again, we arrive at the CNF sentence

((Pav Qv {S5,tz : 32.Pz}Q)
A (Pav [S1,t1]32.Pz) v (S2 : 32.P2)Q)

(10.3)

The rules in Robinson [59], pages 150-152, are sufficient to convert any
boolean sentence into CNF. Since the rules respect boolean valuations, the CNF
sentence is equivalent to the original sentence if their interpretations are boolean

valuations. This yields the following theorem.

THEOREM 10.1. A set of sentences of a propositional modal language
1s valid if and only if its clause form is.

For propositional languages, we define the following notion of subsumption.

DEFINITION 10.3. A clause C subsumes a clause D if and only if
every literal in C is also in D. A set of clauses W dominates a set of
clauses W' if and only if every clause in W’ is subsumed by a clause
in 1.

The following theorems about dominated clause sets will be useful in proving

termination of proof procedures.

THEOREM 10.2. Subsumption and domination are transitive rela-
tions.

Proof. Let C subsume C’, and C! subsume G”. Consider an arbi-
trary literal L of C. By assumption, L is in C’, and hence in C" as
well. Thus C subsumes C".

Section 10.1: A Generalized Davis-Putnam Method 195

Let W dominate W/, and W’ dominate W'. Consider an arbitrary
clause C"' of W". This clause is subsumed by a clause C’ of W/, which,
in turn, is subsumed by a clause C of W. Because subsumption is
transitive, C" is subsumed by C, and W dominates W

THEOREM 10.3. Let Z be a finite set of literals, and o1,09,... a
sequence of clause sets constructed using just these literals. In every
such infinite sequence, some o; will dominate some o; for ¢ < j.

Proof. Let Ly...Ly be the n literals of Z. Consider the power set
P(Z) of Z, which contains 2" members. For each member we can
construct a clause by inserting disjunctions between the literals; let
us call these the canonical clauses C(Z) of Z. These are really the
only distinct clauses that can be constructed from Z, in the sense that
every clause will subsume and be subsumed by one of these canonical
clauses. Now consider the power set of P(C(Z)) of C(Z), which has
22" members. Any clause set g; can be transformed into a member
W of P(C(Z)) by replacing each of its clauses with the equivalent
canonical clause. o; both dominates and is dominated by W. In any
sequence ¢y,09,... longer than 22", there must be some o; and o;
that can be transformed into the same set W of P(C(Z)). By the
transitivity of domination, these clause sets dominate each other.l

Domination is a syntactic concept, but is related to the semantic concept of

satisfiability by the following theorem.

THEOREM 10.4. If W dominates W', then W is unsatisfiable only if
W/ is.

Pruof. Assume that W is satisfiable, so that every clause in W is
true in an interpretation. Since W dominates W/, every clause of
W' is subsumed by some clause of W, and hence also true in that
interpretation. Thus W’ must also be satisfiable.fl

In what follows, we will need the definitions of detached and pure literals,

and tautologous clauses.

DEFINITION 10.4. Let W be a finite set of clauses that contains a
literal L, and let A be the set of literals of W other than L. L is

196 Section 10.1: A Generalized Davis-Putnam Method

semantically detached in W if, for every interpretation I of A, there
is an interpretation of AU {L} that agrees with I on A, and for which
L is true.

L s pure in W if there is no occurrence of its complement.

A clause is a tautology if it contains both a literal and its comple-
ment.

The notion of semantic detachment is important because it picks out literals
whose interpretation is, in a sense, independent of the rest of the literals of W.
Consider the set W' obtained from W by deleting all clauses that contain the de-
tached literal L. W/ is satisfiable if W is, since it is a subset of W. Suppose w!
is satisfied by some interpretation I'. Since L is detached, we can extend I' to an
interpretation I in which L is true, and hence all clauses containing L are also true
in I, so that I satisfies W. The satisfiability of W is thus equivalent to that of W/,
so that clauses containing L can be disregarded in determining the satisfiability of

W. We have the following theorem.

THEOREM 10.5. If L is a literal detached in a set of clauses W, then
the subset W/ ¢ W obtained by deleting all clauses containing L Is
satisfiable if and only if W is.

The definition of a literal pure in a set of clauses is a syntactic one, but is
closely related to the semantic concept of a detached literal. Certainly purity is a
necessary condition for detachment; if a detached literal L were not pure, the atom
set A would contain ~L, and an interpretation that made ~L true could not also
make L true. Purity is also a sufficient condition when the interpretations of W
are all boolean valuations. Suppose L is pure in W, so that its complement ~L
does not appear. Let I be a boolean valuation of the literal set A. Since A does |
not contain L or its complement, we can extend [to an interpretation in which L
is true. We conclude that, if the interpretations of W are all boolean valuations, a

literal being pure in W is equivalent to its being detached in W.

Section 10.1: A Generalized Davis-Putnam Method 197

10.1.2 A Tableau Method for Generalized Davis-Putnam Rules

The Davis-Putnam method for the propositional calculus consists of four
rules that rewrite a set of clauses into a smaller set or sets equivalent in unsatisfi-
ability to the original. These rules make essential use of the fact that all boolean
valuations are allowed interpretations. Of course, not every boolean valuation is an
interpretation of propositional modal logics, because some of the belief literals can
conflict, even though they are not complementary. We will generalize the Davis-
Putnam ruies so that they can take into account more restrictive interpretations of
the literals. We express these generalized rules in terms of a tableau system DP.
It is convenient to use DP to arrive at proof-theoretic properties; from it we can

derive a decision procedure.

In what follows, we assume that W is a finite set of clauses, and L is a literal

contained in a clause of W. C is an arbitrary clause (not necessarily in W).

DEFINITION 10.5. The system DP has the following postulates.

Empty: aw=

Unsat: W =, if W contains an unsatisfiable literal set.
C
Valid: & , where C is valid.
W =
| LvAW=
False: —i—)——ﬁ;—-_:;— , where L is always false.
. LW = o .
Single: W=’ where L is a singleton clause such that ei-
W= ther L or ~L occurs in W; W' is obtained
from W by deleting all clauses containing
L, and deleting all occurrences of ~L from
all remaining clauses of W.
W= . . . !
Detach: Wi where L is a literal detached in W, and W

is obtained from W by deleting all clauses
containing L.

198 Section 10.1: A Generalized Davis-Putnam Method

W =
~LWt W = LW- W=’
where W' is the set of clauses of W not containing L or ~L,
W the set obtained by deleting all occurrences of L from

those clauses of W containing such an occurrence, and W~
the corresponding set for ~L.

Split:

The null clause is false in every imterpretation, and so we have the axiom
Empty. The axiom Unsat is used when W contains a set of literals (singleton

" clauses) that can be shown to be unsatisfiable.

The rule Valid allows us to eliminate clauses that are always true; in the
propositional case, these are the tautologies, but, in the case of fully or partially
interpreted languages, clauses other than tautologies may also be always true. The
rule False is similar to Valid, but checks that a literal is falsified by every model; if
s0, it can be removed from its clause. The rule Single removes singleton clauses, and
also eliminates any clause in which the singleton literal appears, and any occurrence

of its complement. Detach also deletes clauses, given a literal that is detached.

The above rules are very important, because they allow us to prune clauses
from W without the expense of splitting. There are cases, however, in which split-

ting is unavoidable, and the rule Split must be invoked.

For any given language, we can particularize the postulates of DP accord-
ing to the interpretations of the language. For the rules Valid, False, and Detach,
we may give sufficient conditions for validity of clauses, unsatisfiability of literals,
and detachment of literals. These sufficiency conditions are optional, and serve to
increase the efficiency of derivations. In order to use DP as a decision procedure,
however, necessary and sufficient conditions under which a literal set is unsatisfi-
able must be specified (the axiom Unsat), and these conditions must be effectively

computable.

Section 10.1: A Generalized Davis-Putnam Method 199

DP simplifies to the Davis-Putnam rules for the propositional calculus when
the interpretations are all boolean valuations. Under these interpretations, a literal
set is unsatisfiable if and only if a literal and its complement appear, yielding an
effective means of determining if the Unsat axiom applies. A clause C is valid iff
it is a tautology, so the rule Valid is just the elimination of tautologies. There are
no special interpretations for predicates, and the False rule does not apply. The
Detach rule is equivalent to the pure-literal rule of the Davis and Putnam method ix
the propositional case, since we have argued that semantic detachment and purity
coincide for propositional interpretations. Single is similar to the one-literal rule,
but differs in that the literal L is added in the bottom sequent. Since this sequent
is pure in L, L can be removed by the application of the rule Detach. Finally, the

splitting rule of Davis and Putnam is the same as Split.

The rules of DP have as their intent the breakdown of clauses into their
equivalent atom sets. Of course, we could do this by repeated applications of the
rule Split, but this would be computationally inefficient, since n clauses of two
different literals each would yield 2" atom sets. All the rules except Split are

designed to reduce the number of disjunctions without splitting.

Example. Let s =(P>P) A (P> R)A(R>Q) A (@ > P). The clause form of
sis Pv-P, Rv-P, @Qv-R, Pv-Q.

Pv-PRv-PQv-R Pv-Q=>

Valid

Solit Rv-P,Qv-R,Pv—-Q= (104

Sifafe RQvoREP= o e QVOR QP &
¢ R,QP= ¥¢ TSR-Q,-P=

It is an interesting property of the rules DP that we can always construct a
tableau whose brauches terminate in literal sets that are logically equivalent to the

initial clause set. Whether these literal sets are satisfiable or not is a property of

200 Section 10.1: A Generalized Davis-Putnam Method

the particular interpretation we choose for the language. Given an effective method
of determining satisfiability of literal sets in the rule Unsat, we have a decision

procedure.

In the example above, the tableau is open because each terminal node is
satisfiable, and we can use it to construct a propositional model of s. Consider the
literal set of the left branch. We can construct an interpretation that makes all the
literals of this set true, and this interpretation satisfies s. A similar construction

for the literal set of the right branch also yields a model of s.

We now prove an important fact about the system DP: that each rule pre-
serves validity—the top sequent is valid exactly when the bottom sequents are.
This is a stronger result than soundness, and we can use it to establish a decision

procedure.

THEOREM 10.6. The top sequent of each rule of DP is valid if and
only if the bottom sequents are.

Proof. For the rule Valid, if C is valid, then its truthvalue is t in all
interpretations. Hence C,W =- is valid exactly when W is unsatisfi-
able, i.e., when W = is valid.

For the rule False, if a literal L is false in every model, then the
clause L v A is equivalent to the clause A.

For the rule Single, there are two cases. If L has value t in an
interpretation, then any clause containing L also has value t. Hence
all these clauses may be eliminated from W without affecting the
truthvalue of the sequent. Also, any clause C that contains a literal
~L is equivalent to the clause C' obtained by deleting that literal.
The sequent L, W/ = thus has the same truthvalue as L,W = when
L is true. If L is false, both top and bottom sequents are obviously
true. Hence both top and bottom sequents have the same value in
any interpretation.

For the rule Detach, the equivalence of validity of the sequents follows
immediately from Theorem 10.5.

Section 10.1: A Generalized Davis-Putnam Method 201

For the rule Split, suppose the top sequent is true in an interpreta-
tion. If one of the clauses in W’ is false, then both bottom sequents
are also true. If one of the clauses in W is false, then L must also be
false, because all clauses of W™ contain L; so both bottom sequents
are true. And if one of the clauses of W™ is false, ~L must be false,
so both bottom sequents are again true.

Suppose the two bottom sequents are true in an interpretation. If
one of the clauses of W/, W+, or W™ is false, then the top sequent is
true. The only other way both bottom sequents could be true is if L
and ~L are both false, an impossibility.ll

As an immediate corollary, we have that the rules DP are sound. We can

use the Theorem 10.6 to establish a decision procedure.

We stated above that it was a property of the system DP that a finite tableau
couid be constructed, such that all its branches ended in literal sets. We now show
that this is so. To construct a tableau of the requisite sort, we apply the rules
DP in any order to the initial clause set. Each rule application produces a sequent
(or sequents, in the case of Split) whose disjunction count is less than that of the
premise sequent. For example, the application of the rule Split in (10.4) above
produced sequents each of which had a disjunction count of 1, while the premise
sequent had 3 disjunctions. So if we can keep applying the rules, we will eventually
generate a tableau whose leaf sequents have disjunction counts of 0, i.e., contain
only singleton clauses. We need to show that it is always possible to apply some
rule of DP whenever a disjunction exists. Consider a sequent C,W =, where C
consists of the literals Py v P».... It is always possible to apply the rule Split, with
L=nb. ‘

Finally, if a leaf node of a tableau is a literal set, then we can apply the rule
Unsat to close the branch if the literal set is unsatisfiable. Otherwise, because of
Theorem 10.6, we know that the root sequent is not valid, 1.e., the original clause
set W is satisfiable. We collect these results about the system DP in the following

theorem:

202 Section 10.1: A Generalized Davis-Putnam Method

THEOREM 10.7. Let W be a finite set of clauses. By applying the
rules DP to an initial sequent W => in any order, we generate a finite
tableau whose open leaf nodes are of the form Ly, Lo,... =, where
the literal set {Lq, Lo, ...} Is satisfiable. The set W is satisfiable just
in case there exists one such open branch.

Note that the proof of this theorem only requires the use of the postulates
Split, Unsat, and Empty. To apply the rules for an arbitrary language, we only
need specify an effective procedure for computing Unsat. Sufficient conditions for
detachment of literals and validity of clauses can make the construction more effi-
cient, however. One useful heuristic is to delay the use of Split as much as possible
in favor of Detach, Single, and Valid, since any order of application of the rules

genecrates the required tableau.

10.1.3 The Procedure DFP

We now describe a total procedure, DP(W), that returns Sat if the clause
set W is satisfiable, and Unsat if it is not. DP(W) essentially searches a particular
tableau for W. The concept of a reduction of a clause set W is needed in the
definition. If one of the rules Single, Valid, False, or Detach can be applied to the
sequent W =>, we say that W is reducible. If W/ = is the sequent that results from
the application of the rule, we write reduce(W) =4; W'.

DEFINITION 10.6. Let UNSAT(Z) be a total function that returns

t if the Iiteral set Z is unsatisfiable, and f otherwise. The recursive
function DP(W) is defined as follows.

1. While W is reducible do
W + reduce(W)
if @ € W then return Unsat

2. If there is a nonsingleton clause C of W whose first lit-
eral is L,
' if DP({~L,W* W'}) = Unsat and
DP({L,W~,W'}) = Unsat
then return Unsat

Section 10.2: The Method for Unquantified B 203

else return Sat

3. If UNSAT(W) =t
then return Unsat
else return Sat

It is easy to show that DP(W) terminates with Unsat if there is a closed
tableau for W =, and terminates with Sat if there isn’t. While DP(W) is in
step (1), it is following a tableau constructed from W = by applying the rules
Single, Valid, and Detach, which do not branch. If at some point the tableau closes
with the axiom Empty, DP(W) halts with value Unsat. When there are no more
reduction rules to apply, either W is a set of singleton clauses, in which case UNSAT
is called and Unsat is returned exactly if the tableau closes; or there is at least
one nonsingleton clause C. In the latter case, DP follows the two branches of the
tableau produced by the Split rule, calling itself recursively with the appropriate
clause sets. If each of these branches closes, the recursive calls will return Unsat,
and so will DP(W); otherwise it will return Sat. Because the tableau constructed

by the rules DP is always finite (Theorem 10.7), DP(W) will always halt.

10.2 The Method for Unquantified B

To formulate the decision procedure of Definition 10.6 for unquantified B™,
we need to do two things: define sufficient conditions for a literal of BT to be
detached, and give a decision procedure UNSAT(Z) for literal sets Z. This latter
condition amounts to having belief derivation (I' p) be decidable for a particular
logic of B*, as we now show. The definition of Y (S;,t;,Z) used here is given in
Section 5.5; it is the set of sentences that are stated by the literal set Z to be in the

belief set of agent 5; at time ¢, including common beliefs.

THEOREM 10.8. Let Z be a finite set of Iiterals of BY. Define a
function UNSAT(Z) — {t,f} by

204 Section 10.2: The Method for Unquantified B

1. If an ordinary literal and its complement are in Z, then
UNSAT(Z) =t

2. If for any negative belief literal —|S;, tj]p it is true that
Y (Si, 5, Z) B o(;) > then UNSAT(Z) =t.

3. If for any positive circumscription literal (S; :)p it is
true that I' § ,(;y p, then UNSAT(Z) = t.

4. If for any negative circumscription literal =(S; : T)p it
is true that T B ;) p, then UNSAT(Z) =1t.

5. If none of the above conditions hold, UNSAT(Z) =f{.

If B ,(;) is decidable for every agent S, then UNSAT(Z) is a total
function that returns t exactly when Z is unsatisfiable.

Proof. Suppose none of the first four conditions hold. By the com-
pleteness of B, there is a model that satisfies Z. On the other hand,
if one of the first four conditions holds, there is a closed tableau for
Z = using the rules of B in Definition 5.1, and so Z is unsatisfiable
because B is sound.ll

10.2.1 Detachment and Validity for B

We now derive criteria for detachment and validity that can be used in the
rules Valid, False, and Detach. For the former two rules, we consider circumscriptive
literals. From the definition of the valuation function for these literals (Section
5.2.1), it is obvious that {S;, T'})p isvalid if T B (i) P, 2nd unsatisfiable if not. That is,
we can determine the truthvalue of any circumscriptive literal by simply computing
the relevant belief derivation. Using the rules Valid and False, all occurrences of

circumscriptive literals can be eliminated from the clause set.

As for detachment, in the case of ordinary (nonmodal) literals it is equivalent
to purity, because the interpretations of these literals are all boolean valuations. We
now give a sufficient and effectively computable condition, namely nonopposition,
for belief atoms to be detached in a clause set.

DEFINITION 10.7. A positive belief literal [S;, ¢;]p is unopposed in a
clause set W iff W contains no literal of the form =[Sy, t;]q forty > ¢;

Section 10.3: The Method for Unquantified BF 205

and i = 0 or i = n. A negative belief literal =[Sy, {;|q is unopposed in
W iff W contains no literals of the form [S;,¢;]p for t; > ¢; and 1 =0
or 1 = n.

Nonopposition is a syntactic property of a belief literal with respect to a
set of clauses. It is a sufficient condition for detachment, although not a necessary
one: for example, the atom [S;, ¢;]p is opposed to =[S, ¢k]g, vet it also detached if

p ¥ ,(i) - We now prove that nonopposition implies detachment.

THEOREM 10.9. If a clause set W has 2 Bt-model, then it has one in
which every unopposed literal is true.

Proof. Consider first the positive belief literal [S;, ¢;]p, where ¢ # 0
(i.e., this is not a common belief). It is easy to see that this atom
will be detached in a clause set W if there are no literals of the form
—[S;, txlg, where ¢; < t. If there is a Bt-model m of W, we can
always construct a model m' in which [S;, tilp is true. To do this,
simply take all the atoms [S;, ¢x]y and [Sp, ¢¢]6 of W for ¢ < ¢}, and

form the deduction structure dj =41 {TUA, p(4}) (note that p is one of

the 7). If dJ is substituted for the deduction structure of agent S; in
submodel mJ of m, then the resulting model m’ satisfies W (because
there are no negative atoms of the form —[S;, ¢;]r for ¢; < ¢;) and
[S:,¢5].

If 7 = 0, then for every agent S, and every time {; we can form a
deduction structure dk as above, and it is easy to show that the model
m' constructed using d in my, satisfies W if m does.

For the negative literal —[S;, ¢;]p, we form m' from m by substituting
the deduction structure {@, p(¢)) for agent S; and {@, p(0}) for Sp at
every time previous or equal to £;. m! satisfies W because there are
no positive belief literals for S; or S up to or at the time ¢;, and also
obviously satisfies —1(S;, ¢]p.B

Using this result, we have the following sufficient conditions for detachment

in BT.

THEOREM 10.10. A literal L of Bt js detached in a clause set W if
it is an ordinary literal pure in W, or a belief literal unopposed in W.

206 Section 10.3: The Method for Unquantified BF

10.3 The Method for Unquantified B}

At this point we make the choice of a nonintrospective interpretation A}'(of
AT, which gives a logic family BK* that is an extension of BK. In the family of logics
BK, the belief deduction operator } is replaced by provability in a sequent system. In
a similar manner, the definition of UNSAT (10.8} can be modified by substituting
a recursive call to DP(W) for every instance of belief derivation. It is here that
termination conditions prove important, because the procedure thus generated could
cycle infinitely on the same argument W. Thus we defize a modification of DP(W},
DPP(W,), in which the second argument X is used to decide when a call to DPP

is subsumed by some previous call.

We now define DPP, establish its termination, and prove that it is a decision -
procedure for the saturated logic BK}. We will also give a short example proof
done by a computer implementation of the procedure; a more extensive example
solving the hard form of the Wise Man Puzzle (showing ignorance) is given in the

appendix.

DEFINITION 10.8. Let Z be a finite set of literals of propositional

BK{, and ¥ be a set each of whose members o; is a clause set of
BK;. Define a function UNSAT(Z,£) — {t,{} by

1. If an ordinary literal and its complement are in Z, then
UNSAT(Z,%Y) =t.

2. Let —[S;,¢;]p be any negative belief literal of Z, and W
the clause form of Y (§;,¢;, Z)U {-p}. If W is not dom-
inated by any member of ¥, and DPP(W, L U {W}) =
Unsat, then UNSAT(Z,Z)} =t

3. Let (S; : T')p be any positive circumscription literal of
Z, and W the clause form of the sentences I and ~p, If
DPP(W,0) = Unsat, then UNSAT(Z,X) =1t.

4. Let —{S; : T')p be any negative circumscription literal of
Z, and W the clause form of T and ~p. If DPP(W,0) =
Sat, then UNSAT(Z, L) =t.

5. If none of the above conditions hold, UNSAT(Z) =f{.

Section 10.3: The Method for Unquantified BF 207

Remarks. The only change from Definition 10.8 is that the belief operator has
been replaced by a call to DPP in the second, third, and fourth items. The second
item contains the recursive call to DPP that mimics the attachment rule A%; we
could easily change this to reflect an introspective interpretation of A%, parallelling

the development of BS4 and BS5.

Note that we have added the condition that W not be dominated by any
member of T in the second item. This condition is important to prevent infinite re-
cursion of UNSAT and DPP. For example, suppose Z = {|Sp, to]—[51, t1]p, —51, t1]p},
so that W = {[So, fo]—[S1, t1lp; ~[S1, t1lp} = Z in the second item. If it were not
for the domination check, DPP and UNSAT would keep calling each other with the
same first argument. The second argument to both these function accumulates the
sets of clauses that have already been used as arguments to DPP. If a call to DPP
would involve a clause set W that is dominated by a clause set W' € T, this call is

ignored. The end result is that UNSAT and DPP are effectively computable, as we

now prove.

THEOREM 10.11. UNSAT(Z X) terminates for all values of its argu-
ments.

Proof. Let Z' be the set of all literals that are constructable from the
belief operators and predications that appear in Z; 2’ is finite because
Z is. Every recursive call to DPP or UNSAT that is made during the
computation of UNSAT(Z, L) will involve only literals from Z’. Now
‘assume that the computation is nonterminating, so that there is some
branch of the computation that involves an infinite number of calls to
UNSAT. There are two cases to consider. If the infinite branch goes
through item (2) an infinite number of times, then the set X grows
an unbounded amount. By Theorem 10.3, however, for some finite
¥ there must be a member o; that dominates some other member
o;. This violates the conditions of item (2), and so no such infinite
computation is possible.

If the infinite branch doesn’t go through item (2) an infinite number
of times, then it must go through either item (3) or (4) an infinite
number of times. But this is also impossible, since every recursive

208 Section 10.3: The Method for Unquantified B}

call in these items reduces the number of circumscription operators
by at least one, and hence cannot generate an infinite branch.li

We now prove that Definition 10.8 yields a decision procedure for the logic

BK?.

THEOREM 10.12. Let s be a sentence of BY. s is a theorem of BK}
if and only if DPP(W,0) = Unsat, where W is the clause form of s.

Proof. First part: if DPP(W,0) = Unsat, then }'BK;";" s. The

method for proving this is to show that the tableau rules DP (Dei-
inition 10.5) are admissible in BKJ, then convert the trace of the
computation of DPP into a tableau in the system DPY =4 DP +
A}"(+ Circy + Circs.

Second part: if Fak+= & then DPP(W,0) = Unsat. The method
for proving this has three steps.

1. Any closed tableau in BK} can be converted into a
closed tableau in DPY.

2. Any closed tableau in DP* can be transformed into one
in which there is no branch containing subsumed A}
clauses.

3. The decision procedure DPP follows this tableau.

We leave the details for the reader.}

Example. We illustrate the use of the decision procedure on the following set
of sentences of propositional B. This example is a cleaned-up trace of a program
that implements the procedure, without the subsumption check in item (2) of the

definition of IINSAT.

The language has two agents, 81 and 82, as well as “any fool” F. There are
two times with the ordering t1 < t2, and two primitive propositions p1 and p2. The

axioms are as follows:

Section 10.3: The Method for Unquantified B 209

wi: [F,t1]1(p1 Vv p2)

w2: [s1,t1]-p1

L1: (61,t1]-p1 2 [F,t2]-p1
L2: [s1,t1]p1l J [F,t2]p1

W1 states that it’s a common belief at time t1 that either p1 or p2 is true. From W2,
81 believes -p1 at time t1. The axioms L1 and L2 describe the transfer of beliefs
from t1 to t2: whatever 81 initially believes about p1, anyone (including 82) will

believe at +2.

We wish to prove that 82 believes p2 at time t2, given the above axioms. To
do this, we convert the axioms into clauses, and add to them -[s2,t2]1p2, which
is the negation of what we wish to prove. These clauses are given to the procedure
DPP as the input clause set W (see Definition 10.6), and a proof is obtained if DPP
returns Unsat. A trace of the resulting computation follows. Each time a reduction
rule is applied to W, the type of rule is indicated, and the resultant reduced clause
set reduce(W’) is printed. When a split occurs, or the unsatisfiability of a modal
literal set is being checked, a recursive call is made to DPP; all calls are numbered

so that it is possible to tell when the call is finished, and what its result was.

1. Entering DPP level ()

GOAL: ~[82,t2]p2

Wi [F.t1](p1 v p2)

W2: [61,t1]-p1

L1: a[s1,t1]-p1 v [F,t2]-p1
L2: -[s1,t1]1p1 v [F,t2]p1

We enter the procedure DPP with the clause form of the axioms, and the negation
of the sentence to be proven (this is the GDAL clause). The procedure first applies

all nonsplitting reductions.

210 Section 10.3: The Method for Unquantified B}

Single rule: W2: [s1,t1]-pl
L2: ~[s1,t1]pl v [F,t2]pl
L1: [F.,t2]-p1

Wi: (F.t1] (p1 v p2)

GDAL: = [82,t2]p2

W2: [s1,t1]~pl

The Single rule applies, using the singleton literal of W2. The resulting reduced
clause set is printed out. No clauses are eliminated, but one of the literals of L1
is erased. W2 is drawn below a dashed line to indicate that it has already been

considered by the Single rule.

Single rule: L2: [F,t2]-p1
Single rule: Wi1: [F,t1]1(p1 v p2)
Single rule: GODAL: ~[82,t2]p2

L2: =[e1,t1]lpl v [F,t2]p1

Wi: [F.t1] (p1 Vv p2)

L1: [F, t2]-p1

W2: [s1,t1]-p1

GDAL: - [82, t2] p2

The Single rule applies three more times; we have printed out the reduced clause
set at the end of the third application. No clauses or literals have been eliminated;
the four singleton clauses are drawn below the dashed line to indicate that they

have already been considered by for use in the Single rule.

DPP has exhausted its use of the Single rule, and now tries the Detach rule.
It doesn’t apply, because the presence of the GOAL literal opposes every belief literal
of agent 82 and F, and the first literal of L2 opposes the literal of 2. DPP next

applies the splitting rule, creating two recursive calls to itself.

Section 10.3: The Method for Unquantified B} 211

Splitting on literal -[el,t1]pl
2. Entering DPP level ()

SPLIT: ~[s1,t1]pl

L2: ~[e1,t1]pl v [F,t2]p1
Wi: [F,t11(p1 v p2)

Li: [F,t2]~p1

W2: [s1,t1]1-p1

GOAL: ~[82, t2]p2

This is one branch of the split that is based on the first literal of L2. Note that we
keep the belief literals that have already been considered by the Single rule.

Single rule: SPLIT: -[sl,ti]pl

SPLIT: -[e1,t1]pl

Wi: [F,t1] (p1 v p2)
Li: [F,t2]-p1

wa2: [s1,t1]-p1
GOAL: a[e2,t2]p2

At level () with the following negative modal atoms:
SPLIT: ~[s1,t1]pl
GOAL: 1[82,t2]p2

The Single rule eliminates clause L2. At this point there are no more reduction
rules or splits that apply, and we have a belief literal set, of which two are negative.
By item (2) of Definition 10.8, DPP must be called recursively on each of these
in turn; if either one is unsatisfiable, then this branch of the split is unsatisfiable.
We need not keep track of subsumption for this particular proof, because there are

no negative belief literals under the scope of a common belief operator that could

cause an infinite recursion.

212 Section 10.3: The Method for Unquantified B}

Attaching to modal atom SPLIT: -[s1,tilpl

3. Entering DPP level ((sl t1))

Wi: [F.t11(p1 Vv p2)
GOAL: -pl

wi: pl v p2

W2: -pl

We have now attached to agent s1’s view at time t1. The original belief literal Wi
has generated two clauses because it is a common belief. The clause GOAL and W2

are agent 81’s beliefs.

Single rule: W2: -pl

Single rule: Wi: p2

Single rule: GOAL: -pil

Single rule: Wi: [F.t1]1 (p1 v p2)

Wi: {F,t11(p1 v p2)

Unopposed literal in Wi: [F,t1] (p1 v p2)

3. Satisfied! at level ((si t1))

At level () Satisfied modal attachment to SPLIT: -{si,t1]pl

The Single rule applies enough fimes to eliminate all the ordinary literals. The
only clause left is the singleton W1. This literal is unopposed, and so the Detach
rule eliminates it. The clause set becomes empty, so this particular call to DPP
returns the answer Sat. The negative belief atom (- [s1,t1]p1) that generated this

attachment is thus satisfied, and DPP now checks the other negative belief atom.

Attaching to modal atom GOAL: -{82,12]p2

4. Entering DPP level ((82 t2))

Section 10.3: The Method for Unquantified B 213

Li: [F.t2]1-p1

Wi: [F,t11(p1 v p2)
GOAL: -p2

wi: pl v p2

L1: =pl
Single rule: L1: -pl
Single rule: Wi: P2
GOAL: -

Wi: [F,.t1]1{p1 v p2)
L1: [F,t2]-p1

4. UnSatisfied! at level ({82 t2))
At level () Failed medal attachment to GOAL: -[82, t2]p2

2. UnSatisfied! at level ()

The Single rule finds the contradiction in 81, L1, and GOAL, generating an empty
clause. The negative belief atom is thus unsatisfied, and hence so is this branch of

the split. DPP now checks the other branch.

6. Entering DPP level ()

SPLIT: [s1,t1]p1

L2: a[s1,t1]pl v [F,t2]p1
Wi: [F,.t1]1(p1 Vv p2)

L1: [F,t2]-p1

W2: [s1,t1]-p1

GOAL: ~[s2,t2]p2

Single rule: SPLIT: [s1,t1lpl

Single rule: L2: [F,t2]p1
Unopposed literal in SPLIT: [s1,tilpi
Unopposed literal in W2: {s1,t1]-p1

At level () with the following negative modal atoms:

GOAL: ~[82,t2]p2

214 Section 10.3: The Method for Unquantified By

Attaching to modal atom GOAL: = [82,t2]p2

6. Entering DPP level ((s2 t2))

L1: [F,t2]-pl

Wi: [F,t1] (p1 Vv p2)
L2: [F,t2]p1

GOAL: -p2

L2: Pl

Wi pl v p2

L1: =pl

Single rule: L1: -pl
Wi: p2

L2: L

GOAL: -p2

LZ: [F,t2]p1

Wl: [F,t11(pl Vv p2)
L1: {F,t2]-p1

6. UnSatisfied! at level ((82 t2))
At level () Failed modal attachment to GDAL: -[s2,t2]p2
4. UnSatisfied! at level ()

1. Unsatisfied! from split at level ()

In this branch of the split, reduction rules apply until there is a single negative
belief literal left. Attaching fo this literal generates call 6 to DPP, and an empty
clause is produced. Hence the negative belief literal is unsatisfiable, and so is this
branch of the split (call 4 to DPP}. Finally, the results from both branches of the
split are collected, and the first call to DPP returns unsatisfiable, indicating that

[s2,t2]p2 is provable from the axioms.

11. Herbrand’s Theorem for B
with Functions

For logics that make essential use of first-order quantification, there is no pro-
cedure that can decide whether a given sentence is a theorem of the logic. However,
there are procedures that are complete, in the sense that if a sentence actually is a
theorem, the procedure will show this. ¥rom the results of Chapter 9 we know that
the logic qB has such a procedure, based on the method of block tableaux. While
this proof method is adequate for analyzing the properties of gB, it is not suitable
for automatic theorem-proving. The reasons this is so are basically threefold: the
splitting caused by propositional rules such as D and Cs; the many choices for
instantiation of quantified variables; and the computational requirements of belief
derivation in the attachment rule, which essentially acts like a recursive call to the
proving procedure. Of these reasons, the first two are common to first-order logic
as well; early attempts at automatic theorem-proving foundered because of them

(see the historical notes in Chang and Lee [5], pages 62 ff.).

The first great success in automatic methods was achieved by Robinson [60],
using a technique called resolution, which addressed both the splitting and variable
instantiation problems. Robinson’s technique was based on results that had been
obtained by Herbrand relating the unsatisfiability of a sentence in a certain form to a
finite set of its ground instances (Herbrand’s Theorem). However, Herbrand’s result
was a theorem about first-order logic, and does not carry over in a straightforward

manner to quantified-in modal logics; at least one recent attempt to develop an

216 Section 11.1: Skolemization for qB

analog for modal logics has had negative results (see Haspel [17]). Because of this,
Al researchers whose systeimns made use of modal logics of knowledge and belief did
not have available any automatic proof methods for the logic. As an alternative,
they developed the indirect technique of axiomatizing the possible-world semantics
of modal logic in a first-order language, for which automatic methods had been
developed (see Haspel [17], McCarthy et al. [43], and Moore [51]}. However, the
indirection of axiomatization makes the proof methods less efficient and harder to
understand, so there is still a great need for efficient direct procedures for modal

logic.

This chapter lays the foundation for resolution methods applicable to the
quantified-in logic qB, by extending Herbrand’s Theorem from first-order logic to
gB. Because of the correspondence property, this result also holds for quantified
modal logics with possible-world semantics. In the next chapter we utilize Her-
brand’s Theorem to arrive at resolution methods for qB, and show how resolution

can be specialized to yield Al rule-based systems.

The development in this chapter is similar to that in Robinson [59] and
Chang and Lee [5], but, of necessity, the definitions and theorems are modified to.
take into account the special semantics of modal atoms. First we define an extended
language L98" that is similar to L98 but allows functional terms in addition to
constants. A skolem normal form for L8 is derived in which existential quantifiers
are eliminated in favor of newly introduced skolem functions. A restricted class of
B-models, the normative Herbrand models, prove sufficient as a semantic basis for
sentences in Skolem normal form. Finally, we exhibit two proofs of an extension to
Herbrand’s theorem: every set of sentences of L8 in skolem normal form has a

finite unsatisfiable set of ground instances.

Section 11.1: Skolemization for qB 217

1i.1 Skolemization for qB

In a first-order calculus, skolemization is the process whereby prefix existen-
tial quantifiers of a sentence are eliminated in favor of new functions, called skolem
functions, leaving only universal quantification. The resulting sentence is unsatisfi-
able if and only if the original one was. Skolem functions were first used by Skolem
and later by Herbrand (see Kleene [28], page 343). Davis and Putnam [9] intro-
duced the related concept of clause form for sentences of the predicate calculus,
in which the only quantifiers are universal ones that appear at the beginning of a
sentence, and the rest of the sentence is a disjunction of literals. In the next chapter

we develop a clause form for gB; skolemization is a key part of that development.

In its original formulation, skolemization will not work with sentences of qB;
that is, it will not preserve unsatisfiability. For example, consider the sentence
s =g¢ 3z.[5;|Pz A ¥Yz.1[S;]Pz. s certainly has no qB-models. However, eliminat-
ing the existential quantifier and replacing 3z.[S;|Pz by [S;|Pzo (where zg is a
skolem constant) produces a sentence s’ that is satisfiable. We can form a deduc-
tion structure that does not contain Pé¢ for any id constant & (satisfying Vz.~[S;| Pz

by Definition 9.6), yet contains Pz because zj is not an id constant.

The solution to this is to maintain the special status of quantified-in variables
by replacing them with bullet terms, just as was done in defining substitution for
free variables in the definition of L9B(9.2). Bullet terms in a modal context are

schematic: they refer to a constant that is derived from the identifier functions n.

Skolemization introduces the requirement that the language contain func-
tional terms with arguments; to this point we have considered only constants. The
extension of L3B to include function terms is straightforward. However, we will also
introduce a slightly different form for bullet terms. This form has the advantage
of transparent substitution: any term can be substituted into the argument of the

modal operator. Formerly, we had to convert the term into its bullet form and

218 Section 11.1: Skolemization for qB

add an additional J-conjunct (see Definition 9.2). By having a complicated rule
of substitution, we could keep the form of the language L8 simple (i.e., no bullet
terms), which is useful when comparing it to other modal logics of belief. How-
ever, the nonuniform substitution process causes complications when used with the
resolution rule of inference, and so we abandon it here. The price we pay is that
the language becomes slightly more complicated, so that sentences in clause form

contain bullet terms.

11.1.1 The Language L95°

We first define the extended base language Lj.

DEFINITION 11.1. The language LJ is defined as in Definition 3.1,
with the addition of the following items.

6. A denumerable set of functions of degree n for each n >
0 (generally small roman letters from the middle of the

alphabet, eg., f, g).
7. A term operator e of one argument.

A term with no bullet operators is called an orthodox term. A
formula of the form e(r), 7 an orthodox term, is called a bullet term.
An orthodox term with no variables is called an orthodox ground term.
Generally, the adjective “orthodox” will indicate that the object has
no bullet terms, e.g., orthodox atom, orthodox sentences.

The standard formation and valuation rules for ordinary functional terms of
a first-order language apply, for example those in Kleene [28], pages 148-150. The
mapping ¢ from terms to individuals is extended to include functional terms in
this manner. We define bullet terms for any orthodox term 7 as o(r) (we will omit
parentheses when 7 is a simple term, e.g., #a). Note that this means that bullet

terms are never nested, e.g., o(f(ea)) is impermissible.

The language LB is formed from the base language Lj in the usual manger,
by the addition of modal operators (see Definition 9.1). However, we place some

additional restrictions on what constitutes a sentence of LB, First, bullet terms

Section 11.1: Skolemization for qB 219

must always be in the context of a modal operator, so that Vz.P(ez, a) is forbidden.
We do this so that we do not have to define the semantics of e as an orthodox
function; it is strictly a schematic operator inside a modal context. Second, if [S;]¢
is 2 modal atom, all free variables of ¥ (the quantified-in variables) must occur

inside the scope of a bullet operator. Thus

Vz.[5;]3y.P(ez, y)

and
3z.[5;]P(s(f(a, 7)), a)

are sentences, but

VI[S;]E:{,}P(I, y]

and
3z.[S;]P(e(f (e, 7)), 7)

are not. .

We now give the substitution rule for L9B°. Substitution into modal contexts

is the same as in nonmodal contexts.

DEFINITION 11.2. Lety be a formula of L98°, For every variable x
and orthodox term 71 the formula 7 is given inductively by the rules
(1), (2), and (3) of Definition 3.2, together with the rule

4. ([S;¥)F = [Si]¥F

We carry over the valuation of a sentence of L98 with respect to a model
m from Definition 9.6. Note that, because of the condition that all quantified-

in variables be under the scope of a bullet operator, there is never any necessity

220 Section 11.1: Skolemization for qB

to check the truth of any I-predicate in m to determine the truth of a modal
atom. For example, there is a difference in the meaning of 3z.[S;|Pz in LB and
3z.[S;]Pez in LI8°, The latter is true in a model that has an individual & such that
[Pk}y; € bel(d;); while the former is true only if I;(k) is true in addition. 3z.[S;]|Pz
is logically equivalent to 3z.I;z A [S;]Pez in L98®. We can translate a sentence of
LB into one of L98" using the following definition.

DEFINITION 11.3. Let [S;]¢' be an atom of L8" obtained from [S;]9
by replacing every free variable z; not under the scope of a bullet

operator by ez;, and conjoining the atom Iiz;. [S;]¢' is called the
bullet transform of [S;]¢.

The truth value of a modal atom and its bullet transform are equivalent, as

we now prove.

THEOREM 11.1. Let [S;] be 2 modal atom (either L98 or L9B°) with
the free variables x, and [S;|¢' its bullet trapsform. For any element
sequence k, ([S;]¥)} is logically equivalent to ([S;]¢')%.

Proof. By inspection of the valuation rules of Definition 9.6, ([S;]¥)f
is true in m just in case (¢f)y; € bel(d;), and I;(k) is true in m for
every member k£ € k that is not under the scope of a bullet operator.
These are seen to be precisely the truth conditions for ¢} in m.l

If we take a sentence s of L9B and replace every modal atom of s by its bullet
transform, then by Theorem 11.1 the resultant sentence s’ is logically equivalent.
Thus there is a translation of sentences from L8 to L9B°. The reverse is not true,
however, since there may be bullet terms in L98° such as e(f(z)) that have no
equivalent form in L8 which only has bullet constants. However, if we exclude

such terms, the reverse translation also produces a logically equivalent sentence.

With the semantics of Definition 9.6, the substitution theorem 9.7 can be

seen to hold for LIB"; the proof is an easy variant of the one given.

Section 11.1: Skolemization for qB 221

11.1.2 Skolem Normal Form

To transform a set of sentences into its skolem normal form, we first move all
quantifiers not in the scope of a modal operator to the front of each sentence (prenex
formy), then remove all existential quantifiers by replacing them with suitable skolem
functions and bullet terms. The resultant set of sentences, we prove, is unsatisfiable
if and only if the original set is.

DEFINITION 11.4. A set of sentences of L98° is in prenex normal form

if it has the form @121Q222...Qntn M, where the Q); are quantifiers
and M, the matrix, is a boolean combination of atoms.

Quantifiers under the scope of a modal atom are allowed in prenex normal
forms, e.g., Vz.(@z A[S]|Ty.P(ez,y). Just as in the first-order calculus, it is possible
to find a logically equivalent prenex normal form for any sentence of L%, The
rules in Robinson [59], pages 143-149, are an effective procedure for this purpose.
The resulting sentence is logically equivalent to the original in any logic that has
the standard interpretation of the quantifiers and boolean operators, i.e., the quan-
tification is over individuals in some domain, and the matrix consists of boolean

combinations of predications over these variables.

As an example, we translate the sentence Vz.(—3y.(RzyAVz.[S;|R(ez,ey)) v

Pz) into prenex form.

Vz.(—-3y.(Rzy A Vz.[S;|R(e2,ey)) v Pz)
Vz.(Vy.—(Rzy A Vz.[S;| R(ez, ey)) v Pz)
Vz.(Vy.—Vz.(Rzy A [S;|R(ez,ey)) v Pxz)
Ve.(Vy.dz.—(Rzy A [Si|R(ez,ey)) v P2)

) v Pz)

Vz.Vy.dz.(—(Rzy A [S;| R(ez, ey)

z

The skolemization process eliminates existential quantifiers from prenex nor-

mal form sentences.

222 Section 11.1: Skolemization for qB

DEFINITION 11.5. Let s be a sentence of L38° of the form Vx.Jy.¢.
The skolem reduced form of s is the sentence Vx.(;bg (x) where g is a

new function symbol of arity |x|.

By the definition of the language LIB® the skolem function g(x) will be
under the scope of a bullet operator when it is substituted into the context of a
modal atom. For example, the skolem reduced form of Yz .3y.(Pzy A [S;|P(ez, sy)
is

Vz.P(z,9(z)) A [Si]P(ez, (g(z)))-

DEFINITION 11.6. Theskolem transform W' of a set of sentences W of
the language L98° js formed by putting each sentence of W into prenex
normal form, and then successively taking the skolem reduced form
of each sentence until no more prenex existential quantifiers remain.
The introduced skolem functions must be new to the entire set of
sentences. If W =W/, then W is said to be in skolem normal form.

The key theorem of this subsection is that a set of sentences is satisfiable pre-
cisely when its skolem normal form is. To prove this, we show that each application

of skolem reduction to a set of prenex sentences preserves satisfiability.

THEOREM 11.2. A set of prenex sentences W of L98" s unsatisfiable
if and only if its skolem transform is.

Proof” Let s € W be a sentence of the form ¥x.3y.¢ (if none such
exists, W is in skolem normal form). We wish to show that W has a
model iff W/ does, where W' has the sentence s’ = Vx.¢g(x) in place

of s.
If direction: Let m be a model of W/, so that m k s'. Then for every
element sequence k, m ¢;’§(x)‘ Now g(x) = k for some element &

of m, and so, by the substitution theorem (9.7), it must be the case
that m gbiﬁ Hence m [k s, and any model of W/ is also a model of

W.

Only if direction: Let m be a model of W, so that m s. Then, for
every element sequence k, there is some element & such that m | qbi"z.
if g is a function not appearing in W, then we can construct a model

Section 11.2: Normative Herbrand Models 223

m' from m that satisfies all sentences of W, such that g(k) is precisely
the k for which m | ¢, for every sequence k. By the substitution

theorem (9.7), it must be the case that m' ¢i,z[k] for every sequence

k. Hence m' is a model of W'.1

We will need the following definitions of instances and ground instances for

sentences in skolem normal form.

DEFINITION 11.7. Let W be a set of sentences of L8 in skolem
normal form containing the sentence s = Vx.¢». By an instance of s
we mean a substitution ¢¥F of terms for the universal variables. A
ground instance of s is an instance that has no free variables.

11.2 Normative Herbrand Models

The intent of this subsection is to develop Herbrand models for L9B°. These
models have the property that the domain of discourse is the set of orthodox ground
terms of L98°. Confining our attention to Herbrand models simplifies the task of
searching the space of B-models with arbitrary domains. A further reduction in
the space can be made by considering only those Herbrand models whose identifier
functions n are fixed. These are called Herbrand models normative in p. The key
theorem of this subsection is that normative Herbrand models are a complete survey
of the space of B-models, in the sense that, for any set W of sentences in skolem
normal form, we can find 5 such that W is satisfiable if and only if it has a Herbrand

mode] normative in n.

We start with the definition of the Herbrand universe.

DEFINITION 11.8. The Herbrand universe of the language L98° is
the set of all orthodox ground terms. A Herbrand model is a B-model
whose domain of discourse U is the Herbrand universe of LqB', such
that vy(r) = 7 for all orthodox ground terms 7.

224 Section 11.2: Normative Herbrand Models

A Herbrand model maps every orthodox ground term into itself. It is an
important fact that these are the only models we actually need consider for the
predicate calculus. That is, there is a mapping from first-order models with arbi-
trary domains to Herbrand models, such that any set of prenex sentences that is
satisfied by the first-order model is satisfied by the Herbrand model. First-order
models can thus be grouped into equivalence classes, each class being represented
by a Herbrand model. This leads immediately to several important results, for ex-
ample, the Skolem-Lowenheim theorem, which states that every satisfiable set of

first-order sentences has a denumerable model.

The associated Herbrand model m' (with valuation function v{) can be con-
structed from any member m of the equivalence class in the following way: the
valuation vg(Pr) of any ordinary orthodox ground atom is determined by its truth-
value in m, so that vj(Pr) iff m E Pr. Basically, any models that agree on their
interpretation function vg are in the same equivalence class. The Herbrand model
that is the representative of this class is completely determined by the valuation of
its ground atoms, since its domain of discourse is the Herbrand universe, i.e., the

set of all orthodox ground terms.

For L9B°, there also exist equivalence classes of B-models with a Herbrand
representative. In the Herbrand model derived from m, the deduction structures
must be the same as in m, so that all closed belief atoms have the same truth value
as in m. This works fine for closed belief atoms; but those that have quantified-in
variables are still problematical. The important criterion in the construction of
the associated Herbrand model is that the truthvalue of every atomic predication,
including those with free variables, stay the same when the corresponding elements
of the models m and m' are inserted for the variables. For example, we want the
truthvalue of (Pz)j in m’ to be the same as (Pz)} in m when the referent of 2 in m
is &. Now a belief atom such as ([S;]Pz)¥ is true in a model m if the sentence Pa

is in bel(d;), where a is the constant given by ¢ = 5;(k). To preserve the truthvalue

Section 11.2: Normative Herbrand Models 225

of this atom in the model m/, we must construe the function n! to return @ when
m

given any term that denotes £ in m. This motivates the following definition.

DEFINITION 11.9. Let m be a B-model. The Herbrand model m'
associated with m is defined by the following rules.

I. Thedomain of discourse of m' is the Herbrand universe.

2. The valuation ©!(7) of any orthodox ground term 7 is
the term itself.

3. The valuation vy(Pr) of any ordinary orthodox ground
atom is determined by its truthvalue in m: vy(Pt) iff
m E Pr.

4. The identifier function n! of any orthodox ground term
7 is given by n{(t) =q1 m;((7))-

5. The deduction structures of m' are identical to those of
m.

This definition yields a unique associated Herbrand model for any given B-
model. One of the important properties of the associated model is that it agrees

with the original B-model on atomic predications.

LEMMA 11.3. Let m' be the Herbrand model associated with a B-
model m. Let k' be a finite sequence of orthodox ground terms, such
that the referent of each of these terms in m is the corresponding
member of the sequence k. If ¢ is an atom with at most the free
variables x, then

Proof. There are two cases: ¢ modal or nonmodal. For the nonmodal
case, let 7/ =g 7. The referents of 1’ in m are given by the sequence
i, since the referents of k are given by the sequence k'. Then we
have the following chain of equalities.

m'E (Pr)fy =m'EPr |
=mkE Pr' (by Definition 11.9)
—mp (PO

226 Section 11.2: Normative Herbrand Models

For the modal case, we must show that m' |k ([S{]¢¥)f, if m F
([Si})k. Because m and m' have the same deduction structure d;,

this is true if [[zbi,]]in, = [wi]]in By item (4) of Definition 11.9,
1}{[!:5-) = 1;(k;) for all j, and so these formulae are identical.ll

Finally, we are in a position to prove the key theorem about Herbrand models.

THEOREM 11.4. Let W be a set of sentences of L98" jn skolem normal
form. W is unsatisfiable if and only if there is no Herbrand model of
W.

Proof. Let m be a mode] that satisfies W; we will show that its
associated Herbrand model m' also satisfies W. Suppose there is a
sentence Vx.1 of W that is falsified by m’. Then, for some sequence
of orthodox ground terms k', we must have m' } ¢f. Since the
iruth of 7 is a function of the truth of its constituent atoms, by the
previous lemma it must be the case that m Jt 1, where k is the
sequence consisting of the referents of k! in m. Hence ¥x.9 is falsified
by m, a contradiction.li

As a consequence of this theorem, we can relate the unsatisfiability of a set
of sentences of Lq‘B. in skolem normal form to the unsatisfiability of the set of
ground instances of these sentences, where all quantifiers have been eliminated. We
just note that if s = Vx.? is falsified by some Herbrand model m, then, for some
sequence k whose elements are in the Herbrand universe, 9 is false in m. By the
substitution theorem (9.7), this means that the ground instance ¥F of 3 must be
false in m, ‘'where r = k. Hence if a set of sentences in skolem normal form is
falsified by every model, the set of instances of these sentences is also.

COROLLARY 11.5. The set of ground instances of an unsatisfiable set
of sentences in skolem normal form i1s also unsatisfiable.

This corollary is not quite Herbrand’s theorem, because the set of ground
instances is denumerably infinite when the Herbrand universe is. Using the compact-
ness result for L8 (Theorem 9.13), Herbrand’s theorem for LI8® follows. However,

we will also prove Herbrand’s theorem using the method of semantic trees, because

Section 11.2: Normative Herbrand Models 227

it will be useful for deriving results about resolution procedures for L8, Before
proceeding to this topic, we develop the concept of normative Herbrand models for

LaB*,

Theorem 11.4 is important because it collapses the 'spa,ce of models with
arbitrary universes to just models with a Herbrand universe. However, even this
class of models is, in a sense, too large to be surveyed in attempting to show
the unsatisfiability of a set of sentences. The basic problem is that the identifier
functions g are unconstrained: in order to make sure that there is no model of a
sentence, we must check every possibility for 5. This problem is similar to that of
the unconstrained universe in arbitrary first-order models. Our solution there was
to restrict our attention to just a single universe; in a like manner, we can restrict the
n-mappings of B-models to juét a single one; models with a representative mapping
of this sort are called normative models.

DEFINITION 11.10. Let C; be a denumerably infinite subset of schematic

constants in the language LB and let 1n; be a one-one correspon-

dence of the Herbrand universe of L%8" to C; for each agent S;. A
B-model that has § = 51,1n2,... as its identifier functions is called
normative in 5.

The sequence C; of schematic constants play the same role for bullet terms
that skolem functions do for existential quantifiers. That is, we fix beforehand the
particular schematic constant that a bullet term is mapped to by #;, just as, for
existential quantifiers, we fix the skolem constant that denotes the existential indi-
vidual. Also, the mapping for every different bullet term is a different schematic
constant. Because the constants are schematic, they have no distinguishing char-
acteristics relative to the deduction structure rules for an agent, and hence can
participate in any deduction in which the particular identity of the id constant is

not important.

228 Section 11.3: Semantic Trees

THEOREM 11.6. Any set of sentences of L9B° that has a denumerable
model has a normative model.

‘Proof. Let W be a set of sentences satisfied by m with denumerable
universe U. We will derive a model m’ from m that is normative and
satisfies W. The valuation function v{] and domain of discourse U of
m' are the same as in m. The 5 mappings of m’ are derived as follows.
Let C; be a denumerable set of schematic constants none of which is
in W, and let 5; be a one-one correspondence between U and C;. The
deduction structures of m' are defined as follows. Consider the belief
atoms that appear in W. Let {S;]+ be such an atom with at most the
free variables x. If m £ ([S;]¥)%, then [¢f]}, is in the base set of ..

It is obvious that m' | ([S;]9)% if m [([S;]¥)% for every element se-
quence k. The converse must also be true, for suppose m' & ([S;19)%,

but m J& ([S;]4)f. Then there must be a proof of [[qbl’:ﬂ:n, from the
hase sentences of d;; any such proof would still be a proof if any other
orthodox terms were substituted for the schematic constants C;, by
the nature of schematic constants, Thus there would also be a proof
of [¥§]}, from the base sentences of d;, which yields m f {[S;]¥)5, a
contradiction.

Since the valuations of m and m’ have the same domain of discourse
and agree on every atomic valuation over that domain, they must
agree everywhere. Hence m' is a model of W.§

An important corollary of this theorem is that every set of sentences W that
has a Herbrand model also has normative models; indeed, it has a model normative
in n for every choice of the identifier ensemble 5, as long as the range of each function
of does not..include any schematic constants that appear in W. This means that,
for any W, we can fix g and just examine those Herbrand models normative in 5
when we try to show the unsatisfiability of W.

COROLLARY 11.7. Let W be a set of sentences of LqB., and let

be any identifier ensemble whose ranges contain no constants of W.
Then if W has a model, it has one normative in 5.

Section 11.3: Semantic Trees 229

/ \
AT,
ANEASTANEAN:

Figure 11.1 A Semantic Tree for P, @, and R.

11.3 Semantic Trees

For first-order languages, the Herbrand models are completely surveyed by
a type of unordered binary tree called a semantic tree. They are derived by con-
sidering a sequence Py, P5, ... of all ground atoms. Starting at the root node, the
first element of the sequence is used to add two new nodes; the branch to one is
labeled by Pj, to the other by its complement —P;. The process is continued, so
that, at a stage n, each of the leaf nodes is extended by adding two new nodes, and
the branches are labeled by P, and =P, (see Figure 11.1). Each branch of the tree,
extended as far as possible (if the sequence is infinite, then the branch will be too)

is a complete valuation of all ground atoms.

The Herbrand base is the set of all ground atoms of a first-order language. For
a predicate calculus, a valuation of the Herbrand base defines a unique Herbrand
model, since the Herbrand universe is the domain of discourse, and all function
terms map to themselves. Hence a semantic tree surveys all possible first-order

Herbrand models, with each complete branch being one such model.

For L9B" the situation is more complicated. A B-model contains, in addition
to its first-order component, a set of deduction structures representing the belief
subsystems of agents, and a function ensemble g for associating constants with

individuals. To survey these models in a semantic tree, we will put additional

230 Section 11.3: Semantic Trees

elements, namely ground orthodox modal atoms, into the Herbrand base. The
effect of these atoms will be to encode the contents of deduction structures. Each
branch of the semantic tree will then represent a set of Herbrand models: those

with the same first-order and deduction structure components, but with different

functions.

DEFINITION 11.11. The Herbrang base of a language L9B° js the set
of ground orthodox atoms of L9B°,

Recall that an atom is ground if it contains no free variables. For example,

if Ly = {P2 QY a,b, f1}, then

P(a,b)

Q(f(f(a)))

[51]1P(a, b)

[S2)(Q@a A Vz.P(z, f(a))}

are all in the Herbrand base. Note that closed modal atoms can contain quantifica-
tion and boolean operators under the scope of the modal operator, but do not have
free variables or bullet terms. That is, for the Herbrand base, we are only interested
in modal atoms asserting that a particular sentence is in a deduction structure, just
as we are interested in ordinary atoms asserting a property for particular constants
of the Herbrand universe.
DEFINITION 11.12. A semantic tree for a language L% jsa binary
tree deﬁned by considering a sequence ¢, ¢o ... of the Herbrand base
of L9, Every node on the nth level of the tree has two daughters,
and the links to these daughters are labeled with the literals ¢, and
—¢n. The literal set of an arc is the set of literals on all links of the
arc; on the arc ending in node N this is denoted by L(N). A branch
b Is an arc that does not have any successors; it is complete if every

member of the Herbrand base or its complement is in the literal set
of b.

An example of a finite semantic tree for L98° is given in Figure 11.2. As

stated above, each complete branch of a semantic tree is intended to represent a set

Section 11.3: Semantic Trees 231

s / \[S]P [S,-V \IS.-]P
e N N N

Figure 11.2 A Semantic Tree for P, [S;]P, and [S;]-P.

of Herbrand models that agree everywhere except on 5. If Z is the sét of literals on
a branch, then Z defines vy(P(7)) for all ordinary ground atoms by whether P(7) or
-P(7r) is in Z. It also defines deduction structures for each agent, by the condition
that p € d; if and only if [S;]p € B. However, there is an additional complication:
not all branches define realizable deduction structures. For example, if L(N) =
{[S;]P, [S;](P = Q),~[5;]Q}, and p(i) includes modus ponens, any complete branch
that includes NV does not define a deduction structure for S;, because @ must be
in a deduction structure that contains P and P > (). Branches that contain such

unsatisfiable sets of modal atoms are called dismissed branches.

Let us summarize this discussion of semantic trees with the following defini-

tion.

DEFINITION 11.13. Let Z be the literal set of a complete branch
b. An associated Herbrand model of b is any Herbrand model that
satisfies the following conditions.

1. yw(Pr)=t iff PrcZ.
2. pc€hbelld)) iff [SpeZ.

If b does not have any associated Herbrand models, then it is called
a dismissed branch.

For the language LqB., semantic trees are only an imperfect survey of the

Herbrand models. Some complete branches, the dismissed branches, correspond to

232 Section 11.3: Semantic Trees

no Herbrand model at all, while the others have multiple associated models with
different 5 ensembles. However, by Corollary 11.7, we know that, if a set of sentences
has a Herbrand model, it has a normative one for any suitably defined ensemble.
If we pick such an g, then the semantic tree is a complete survey of all Herbrand
models that are normative in 5: every complete, nondismissed branch specifies
a first-order valuation vy and deduction structures d;, while § and the Herbrand
universe are fixed. From now on, we assume that we have picked a particular g,

and all Herbrand models of the tree are normative to this ensemble.

We now come to the key fact about semantic trees: if a set of sentences W
in skolem normal form is unsatisfiable, we need only look at a finite frontier of the
tree to show that this is so. A frontier node has the property that every complete
branch passing through it leads to a normative Herbrand model in g that falsifies
W. Since the tree is a complete survey of all such normative models (for fixed 5, of

course), there is no satisfying Herbrand model, and hence no model at all.

We define what it means for a sentence to be falsified by the literal set L{N)
of a node. L{/N) can be thought of as only partially specifying a Herbrand model,
or, equivalently, specifying a set of Herbrand models, the models that agree with its
literal set {these models are all normative to a fixed). A sentence s is falsified by
N if it is false in every Herbrand model normative to g that agrees with L(N). If
N is a2 maximal falsifying node, in the sense that nomne of its ancestors falsifies s, it
is called a failure node for s, since any branch through it cannot lead to a Herbrand
model satisfying s. A special type of failure node occurs when every continuation
of an arc through a node N is a dismissed branch. N is called a dismissed node,
and its valuation L(/N) does not agree with any Herbrand model; dismissed nodes

thus falsify every sentence.

Section 11.3: Semantic Trees 233

[S]P/\[S]Pc S]P/\[S]Pc
[S:]Pa / \“[5 |Pa Vz.(Pz v [5]]Pz)]

P¢ B-p[

Figure 11.3 A Semantic Tree for P, [S;]P, and [S;|-P.

Example. Figure 11.3 shows a portion of the semantic tree for the sentence s =
Vz.(Pz v [S;]Pz) and the naming function #;(a) = . There are two failure nodes.
The rightmost falsifies s, because its literal set includes —=Pa and —[S;]|P¢: there is
no Herbrand model normative in #; that agrees with these literals and yet makes s
true. The leftmost is a dismissed node, since Pt B-p(,-) Pa.

DEFINITION 11.14. A semantic tree for s is closed if every branch
contains a failure node for s.

A closed semantic tree for W means that W has no Herbrand models norma-
tive in 9, because the tree is a complete survey of all such models, and none satisfies
W. We wish to show that W has a finite closed semantic tree whenever it has no
Herbrand models normative in n. To prove this, we first establish a preliminary

lemma about dismissed branches.

LEMMA 11.8. Every dismissed branch has a failure node for tautolo-
gous 3.

Proof. A tautologous sentence s is true in every model, so we must
show that every dismissed branch has a node that does not lead to any
model. Let b be a dismissed branch, and suppose that, for every node
N of b, the literal set L(N} agrees with some Herbrand model. But
then we can show that b must have an associated Herbrand model m,
as follows. The first-order part vy given by Definition 11.13 is a valid

234 Section 11.3: Semantic Trees

atomic valuation, because no ordinary literal and its complement are
present in b, Now consider the belief literals of & for agent S;. This
is a perhaps infinite set {[S;][', -[S;|A} that contains no bullet terms.
By the Q-Attachment Lemma 9.10, if there is no deduction structure
that satisfies these literals, there must be a finite subset I'g C I and an
element § € A such that I'g B ;) 6. However, there is a node N whose
literal set L(N) contains [S;|['g and —[S;]6, and this is a failure node,
contradicting the original assumption. Thus the deduction structures
defined by b are legitimate.ll

The proof of this lemma depends on the fact that belief literal sets of LIB”
are atomically compact: if the whole set is unsatisfiable, there must be a finite
unsatisfiable subset. The dismissed branches of a semantic tree are precisely those
that contain an unsatisfiable set of belief literals, and every dismissed branch will

have a node N whose finite literal set is unsatisfiable.

We need the following result about finitary trees (ie., trees that always have

a finite number of branches at each node).

LEMMA 11.9. (Konig’s Lemma) Every infinite finitary tree has an
infinite branch.

This lemma was proven by Konig [29] in 1926. We will exploit the contra-

positive form: if a finitary tree contains no infinite branch, it must be finite.

Using these two lemmas, we now prove a version of Herbrand’s theorem for

9B

THEOREM 11.10. Every set of sentences of L98° in skolem normal
form is unsatisfiable if and only if it has a finite closed semantic tree.

Proof. H part: suppose there is a closed semantic tree for the set of
sentences W, Then there is a failure node on every branch, and W
has no Herbrand model normative in 5. By Corollary 11.7, W has no
Herbrand model at all, and by Theorem 11.4, W is unsatisfiable.

Only if part: suppose W is unsatisfiable and in skolem normal form.
Assume that the semantic tree has a complete branch b with no failure

Section 11.3: Semantic Trees

nodes; by Lemma 11.8, this branch has an associated Herbrand model.
But then m satisfies W, by the following argument.

Let 3 = Vx.7) be some sentence of W. If m J£ s, then for some element
sequence k of the Herbrand universe it must be the case that m f 9.

But then there must be a node of b that falsifies [['d)ﬁ]];n, because the
interpetation of 9% is fixed by an interpretation of the finite number of
ground atoms that constitute its matrix. This contradicts the original
assumption that there were no failure nodes, and so s is satisfied by
m. Because s was chosen arbitrarily, every sentence of W is satisfied.

Thus every branch is closed at some finite point. By Kénig’s Lemma
there must be a finite closed semantic tree for W.J

235

This is the version of Herbrand’s theorem given in Chang and Lee [5]. The

standard form of the theorem can be derived by considering the frontier of failure

nodes.

THEOREM 11.11. Every unsatisfiable set of sentences of L8 in skolem

normal form has a finite unsatisfiable set of ground instances.

Proof. Consider the minimal frontier of failure nodes of the finite
closed semantic tree for an unsatisfiable set W. Each of these frontier
nodes-falsifies a ground instance of a sentence of W. Since the set
of failure nodes is finite (by Konig’s Lemma), there is a finite set of
ground instances of W that falsifies every node of the frontier, and
hence (by Corollary 11.7) is unsatisfiable.|j

12. Resolution Methods for 4B

We develop resolution methods for qB simtilar to those for first-order logic.
These methods are founded on the extension to Herbrand’s Theorem for the logic
gB. Although they were originally developed for gB, because of the correspondence
property they are also appropriate for modal logics with possible-world semantics

that are equivalent to the saturated form of qB.

Resolution methods have a special importance for Al, because one of the prin-
cipal methodologies of the field is to axiomatize a domain in some formal language,
and then produce intelligent behavior by proving theorems about the domain. The
main reasoning facility of many Al systems i1s an automatic theorem-proving pro-
gram; one need only look at the popularity of PROLOG, a programming language
for Al based explicitly on resolution theorem-proving methods, to see that this is
so. The emphasis in Al is on incomplete methods that can easily be modified to
prove theorems efficiently relevant to a particular application domain. Perhaps the
dominant technique in this regard is rule-based deduction (see Nilsson [54]}, which
combines a certain restriction of the resolution principle called unit resolution with

techniques for embedding control information in the axioms.

In this chapter we will develop a resolution-based deduction system for qB,
then introduce refinements, including unit resolution, that lead to the definition
of a rule-based deduction system. The basic resolution system, R, contains one

resolution rule specifically dealing with belief operators. This rule is a version of

238 Section 12.1: Unification and Resolution

the attachment rule A modified for clause form, and is noteworthy in two respects.
First, it is similar to the hyperresolution rule defined by Robinson [60], in which
input is taken from some number of clauses, rather than just two. Second, it uses
a schematic belief derivation operator II B‘f,(i) 3 that allows its arguments IT and ¢
to have free variables, and returns a substitution # under which a derivation can be
obtained. Together, these techniques alleviate the three computational inefficiencies

of tableau systems pointed out at the beginning of the last chapter.

The system R is proved sound and complete. From it, we define three par-
ticularizations. The first, RK, uses resolution with answer extraction for schematic
belief derivation, and is also a complete system. The second, RKu, is an incomplete
but more efficient refinement of RK using only unit resolution: at least one resolvent
is always a unit clause. Unit resolution is a technique employed by Al rule-based
deduction systems, and the final method we define, based on RKu, is an incomplete

svstem RB of this variety.

To the author’s knowledge, this is the first resolution system developed for
a modal logic based on a first-order language. The only other relevant work seems
to be that of Farifias-del-Cerro [12], who has developed a resolution technique for
the predicate modal logic S4 with the Barcan formula as an axiom. However,
there is a crucial restriction on the language he uses. Quantifying-in is allowed,
so that an ex.pression of the form Jz.0 Pz is legal; but quantifiers may not be
introduced within the scope of a modal atom; so the expression 00(3z.Pz) is not.
This is a great simplification of the language, since it does away with any interaction
between variables quantified inside and outside the scope of the modal operator. As
we have seen in the development of Herbrand’s Theorem in the previous chapter, it
is precisely this interaction that necessitates the introduction of bullet terms, and
causes complications in showing that Herbrand’s Theorem actually holds. Farifas’

rules are not extendable to the language of qB.

Section 12.1: Unification and Resolution 239
12.1 Unification and Resolution

Resolution is a single inference rule that is sound and complete for sentences
of the predicate calculus in clause form. In this section we derive resolution rules
for the clause form of L98°. Because of the added complexity of the language L98°,

two rules are necessary for a complete system.

12.1.1 Clause Form for L98" and LB

We wish to transform a set of sentences B of L9B or LIB° into a set of clauses
of LqB., which are simply disjunctions of literals prefixed by universal quantifiers.

This can be done in four steps.

1. If the sentences are in LqB, then replace each belief atom by
its bullet transform.

2. Convert B to Skolem normal form.
Conveit each matrix into conjunctive normal form.

Dissolve conjuncts to arrive at individual disjunctive clauses.

As an example, we translate the singleton set {Vz.(—~3y.(RzyaVz.[S;|R(z,y))v
P2)} into clause form. First, because this is a sentence of LB, we replace the belief

atom by its bullet transform.

V. (-Jy.(Rzy AVz.L;z A Ly A [S;]R(ez,ey)) v P2)

Next, the prenex form of the sentence is

Ve Vy.3z.(~(Rzy A I;z A I;y A [S;|R(ez, ey)) v Px)

Skolemizing yields

Vz.¥y.(~(Rxy A Lig(z,y) A Liy A [S;]R(e(g(z,y)), oy) v Pz)

240 Section 12.1: Unification and Resolution

We convert the matrix into its conjunctive normal form

Vz.Vy.-Rzy v -I;g9(z,y) v -~ I;y v =[S;|R(e(g(x, y)), ey) v Pz

There is only one clause, namely
{~Rey, ~Lig(z,y), ~Ly, —[S5;]R(=(9(z,y)), *y), Pz}

Note that a clause is a finite set of literals; it is equivalent in truthvalue to the
disjunction of its members. At times we write clauses with disjunctions instead of
set brackets, as in Ly v Lo.... We use capital 4 to stand for a set of literals; the
notation C = L, A or C = L v A indicates a clause C consisting of the set {L} U A.

The null clause is written as A,

Because each of the steps in translating to clause form preserves the satisfi-

ability of the original set of sentences B, we have the following theorem:

THEOREM 12.1. A set of sentences of L98" js unsatisfiable if and only
iIf its clause form is.

We will need the following definitions of instances and ground clauses.

DEFINITION 12.1. Let C be a clause of L9 with at most free vari-
ables x. By an instance of C we mean a substitution C¥ of terms for
the universal variables. A ground instance of C is an instance that is
a sentence.

Because of the results of the previous section on normatijve Herbrand models,
we have the following important theorem relating the satisfiability of a clause and

its ground instances.

THEOREM 12.2. A clause is unsatisfiable only if a finite subset of its
ground instances is unsatisfiable.

Section 12.1; Unification and Resolution 241

12.1.2 Substitution and Unification

We carry over results from Robinson [59] directly in this subsection. No
modifications need be made for LqB', because unification is insensitive to the se-
mantics of the language it is applied to.

DEFINITION 12.2. A substitution is a form {7 /zy,...7n/2zs}, where

all of the z; are unique and no z; occurs in any 7;. It Is a ground

substitution if each of 7; is ground. If § is a substitution {r/x} and

C is a clause, C8 = CF is an instance of C. A substitution 8 is

more general than a substitution o (§ > o) if o can be formed by the
composition of § and some other substitution.

Unification is a matching operation in which two or more literals are made
to look identical, if possible, by a given substitution. The substitution is called a
unifier of the literals. If there is more than one unifier of a given set of literals, there
will always be a most general unifier that has the property that it is more general
than every other unifier.
DEFINITION 12.3. A unifier of a set of literals is a substitution 8 that
makes the literals identical. If for every unifier o of the literal set,

> o, then 8 is a most general unifier or mgu of the set. We write
L0Lo if 0 is the most general unifier of Ly and L.

Every unifiable literal set has a most general unifier, and all mgu’s are equiv-
alent modulo the renaming of variables. The unification algorithm {see Robinson
[59], pages 191-192) is an effective procedure that takes a set of literals as input, and
either terminates and reports that no unifier exists, or produces the most general

unifier as output.

12.1.3 Complete Schematic Belief Derivation

In the ordinary predicate calculus, resolution is a rule of inference that derives
a clause from two parent clauses. The general idea is to make a literal from one

parent clause the complement of a literal in the other parent clause, by finding

242 Section 12.1: Unification and Resolution

a most general unifier for their atoms. If ¢ = L;, Ay and C2 = Lg, A2 are the
parent clauses, and Ly and Lo are complementary literals under a most general
substitution #, then the resultant clause is R = A0, A28. Ly and Lo are called the

literals resolved upon.

Resolution is an interesting rule of inference for the predicate calculus be-
cause of the properties of the most general unifier. One important result of these
properties is called the Lifting Lemma (see Robinson [59], pages 210-211): if
C} = LY, A} and C% = L), A} are any instances of C1 and Cp, then their resol-
vent R’ = A{6', AL#' is an instance of R. Essentially, the Lifting Lemma says that
when we do a resolution, we are considering at once a whole class of inferences
that could have been performed on the instances of the parent clauses. A single

resolution involving the most general unifier subsumes all these others.

In the case of modal literals, there are difficulties in applying a unification
procedure. Consider first the simple case of the two literals —[S;]Pex and [S;]Pea.
Here the most general unifier is {a/z}, and the two modal atoms are identical
under this substitution; a valid resolution inference can be made using the two

complements.

On the other hand, consider the literals —[S;]Pez and [S;](@Qa A Pea). There
is no unifier for the modal atoms, and hence no way to produce complementary
literals by substitution. However, a valid inference does exist, given sufficiently
powerful deduction rules p(7), because Qa A P¢ § o(i) Pt for some constant ¢ such
that ¢ = 5;(e). Thus there is a substitution {a/z} that causes a conflict between the

two literals, but it cannot be found by the application of the unification algorithm.

How do we go about finding substitutions that make belief literals conflict?
If we limit ourselves to systems in which conflicting literals are determined by their
attachment to the belief deduction operator, then the only possibility is to try every

possible substitution that creates a ground instance, and test the resultant modal

Section 12.1: Unification and Resolution 243

arguments using belief derivation. Needless to say, this is not an efficient procedure;
it would be equivalent to doing resolution without unification, by creating ground
instances of the parent clauses first, and then checking to see if they had literals

that could be resolved upon.

To do better than this, we must allow the belief derivation process to return
more information than simple success or failure. We have already addressed this
point to some extent in Section 2.1, when we discussed the derivation of answers to
questions of the form “What individuals have property P?” Such a question could
be answered by a derivation process that allowed free variables in the query, and
returned, along with an affirmative response, bindings for the free variables that

made the query true.

In developing resolution rules for qB, we will assume that we have a derivation
operator whose arguments can contain free variables, and whose result includes a
substitution for those variables; we call this a schematic belief derivation operator.
For example, we would write @Qa A Pb B—ff(’:/)x} Pz if Pb were derivable from Qa A Pb
under the rules p(7). In general, the operator B—% describes a belief derivation process
that uses the rules R and returns the substitution @ for free variables contained in
its arguments. The substitution need not contain just ground terms; for example,
the substitution {f(y)/z} states that there is a proof for any individuals z and y
that satisfy the given relationship.

It should be noted that there are cases in which no “most general” substitu-
tion exists for schematic belief derivation. For example, the derivation Pa A Pb}?
Pz holds for either § = {a/z} or # = {b/z}, and neither of these can be formed
by composition from the other. However, it is important that the substitutions
returned cover the space of possible instances of belief derivation. We make this

more precise by stating the following condition on belief derivation:

Completeness Property for Schematic Belief Derivation. Let I and % be or-

thodox formule of LqB., perhaps containing free variables. Let o be an

244 Section 12.1: Unification and Resolution

orthodox ground substitution such that T'e B-p(,-) ®o. Then there is a
schematic derivation T’ B-f’(f] ¥, such that 8 > o.

A schematic derivation operator that has this property is said to be complete.

Do there exist derivation processes with the properties we have just de-
scribed? In the simplest case, one could always take ordinary belief derivation and
have it return substitutions by the following strategy. Assume there is some enu-
meration of ground substitutions #1, f2, For II and % with free variables, try
to derive ¥8 from II#. If it succeeds, then 11 B'z(:') 1, and the derivation process
returns §. Continuing in this manner, all of the ground substitutions that make the
derivation succeed wouid eventually be found. If we are trying to show that clauses
involving the modal atoms [S;]II and [S;]y are unsatisfiable, by Theorem 12.2 there
is a finite subset of instances of these clauses that are unsatisfiable, and at some
point we would accumulate enough information from the belief derivations to show

this.

Of course, this is just our original, inefficient suggestion for using belief
derivation in resolution. But there are other methods that work better. One such
is the answer extraction technique of Green [16]. We will give an example of this
in a later section {12.2.1); here we give resolution rules for any complete schematic

belief derivation process.

Besides being complete with respect to substitutions, we demand that belief
derivation also be schematic with respect to a countably infinite set of terms. In
the language L9B, the only terms were constants, and we used a set of id constants
called schematic constants (written as ¢). In schematic belief derivation we must
allow for more complicated constructions, because the argument to a bullet operator
can be a functional term, perhaps containing free variables. In performing belief
derivations, we replace the bullet operators with a special class of unary function

symbols, the schematic functions. These will be written as §, and have the same

Section 12.1: Unification and Resolution 245

properties as schematic constants, namely, any derivation containing the schematic
term §(7) is a valid derivation if the schematic term is replaced everywhere by an
id constant. Note that we do not demand that the argument to § be schematic. In
a sense, the schematic term isolates its argument from the rest of the sentence, in

much the same way that the bullet operator does.

In an analogous fashion to Definition 9.3, we define the bullet deletion trans-

form of a set of formula of L98". Note that these formulz may have free variables.

DEFINITION 12.4. Let II be a set of formul® of L98°, and Iet g be
a unary schematic function not appearing in II. The bullet deletion
transform of I is a set of sentences I1® in which every bullet operator
of T is replaced by g.

For example, consider the set of formulz {Pez,[S;|Pea}. Its bullet deletion
transform is the set {P(g(z)), [S;]P§(a)}-

The bullet deletion transform is closely related to the interpretation of the
bullet operator under normative Herbrand models. We prove two theorems about

this relationship.

THEOREM 12.3. Let T and a be sentences of LqB'_, and let m be
a normative Herbrand model. Then [T, B () [e]m if and only if

F. B'p(l') a'.

Proof. Because m is a normative Herbrand model, any bullet term er
in ' or « is replaced by the schematic constant n;(7)}, where n;(r) #
n;(r") for 7 # 7'. Similarly, in the bullet deletion transform of T
and « a bullet term o7 is replaced by the schematic term g(7). The
schematic terms §(r) and §(r') act like schematic constants that are
different exactly when 1 # 7/. By the nature of schematic terms
and constants, any one can substitute uniformly for another in belief
derivation; hence the two derivations are equivalent. |

THEOREM 12.4. Let {II,9} be a set of formule of L9B" perhaps
containing bullet terms and free variables, and let {IT1*,¢*} be its
bullet deletion transform. Suppose that II* B—g(f) ¥*. Then, for

246 Section 12.1; Unification and Resolution

any ground substitution fo and any normative Herbrand model m,
[MM6o]2m B o) [bolm.

Proof. Suppose that II® B‘f,(,-) 1*. By the nature of complete schematic
belief derivation, for any ground substitution §o we have IT*dc B-p(‘-)
¥*8o. By Theorem 12.3 above, this is equivalent to [Ffo], B-p(:-)

[#8c]}, for any normative Herbrand model m.f

We have abused the terminology slightly in the statement of these two theo-
rems. The bullet deletion transform is an operation on a set of sentences considered
as a unit; thus II® is the bullet deletion transform of I, and +%*® of ¥, but the set
{I1*, %"} is not the bullet deletion transform of the set {IT,1}. Nevertheless we will
continue this notation when the context makes it clear what is meant, because it is

more compact.

12.1.4 The Resolution System R(Lg, p)

We now give three rules that form a complete resolution system for a given

base language Lg and agent rule ensemble p.

DEFINITION 12.5. Let B-g(l-) be a complete schematic belief derivation
operator. The resolution system R(Lg, p) has the following rules.

L, Lo ...Ln, A

By L.0,48 '

where # is the most general
unifier of Ly, Lo, ... Ly.

Ly, A1
Lo, Ay

Re: 416 agp

where L{6~Lo.

[‘Sl']n'ls Al
[S;]m2, A2

[Silﬂ'ﬂ:An
_'[S"]!D,A
A6 AD, .. A0’

where 7],...), B—g“) P°

Section 12.1: Unification and Resolution 247

Remarks. 1In all these rules, we assume that the variables in the parent clauses
have been standardized apart: no two clauses share the same variable. The first
rule is a factoring rule: it compacts literals of the same clause that can be made
identical by some substitution. Rule Rz is a binary resolution rule for predicate
calculus. It finds literals of two parent clauses that can be made complementary by
a substitution, and derives a new clause that does not contain the clashing literals.
In many standard resolution systems for predicate calculus, the factoring and binary

rules are combined into a single rule of resolution.

Rule Rj3 is specific to belief literals. It is similar to the attachment rule ¢A
for the sequent system qB, but it allows free variables in the premises, and belief
derivation returns a substitution for these variables that is used in the conclusion.
Note that the number of premises is variable: the only essential premise is the last

one, the negative belief literal; all the others are optional.

Like the attachment rules for the sequent systems B and qB, rule R3 uses
the process of belief derivation directly in its definition. It is thus not a bona
fide deduction rule unless schematic belief derivation is a decidable process. In
the next section we define particular forms of belief derivation that allow us to
consider systems in which the rules of belief derivation become rules of the resolution
system itself. This is similar to the method used in deriving BK from B: instead
of considering B as a single operation, we break it down into steps, each of which

becomes a rule of the logical system.

A resolution proof is defined in the following way. Let Wy be a finite set
of clauses whose unsatisfiability we wish to check (the input clauses). By choosing
some parent clauses from Wy and performing a resolution inference using one of
the three rules above, we obtain a new clause C. Let W) = Wy U {C}, and repeat
the procedure for Wi. In this way we obtain a sequence of clause sets Wy, W1, ...,
such that any member of the sequence is unsatisfiable if and only if Wy is. At some

point, we may encounter a W, that contains the null clause; if this occurs, then it

248 Section 12.1: Unification and Resolution

must be the case that Wy is unsatisfiable, and the sequence up to W), counts as a

proof of this fact.

Example. We first prove Theorem 9.1 of the system qB, namely, 3z.[S;]Pz >
[S;]3z.Pz. In clause form the negation of this sentence has three singleton clauses,

with the skolem constant zg:

I:L‘o
[Si]Pezxg
=[S]3z. Pz

If we assume that P(§(zo}) B,(;) I=.Pz, then by rule R3 the second two clauses
can be resolved to produce the null clause. Note that we used the bullet deletion
transform of Pezy, and so replaced exy by g(zg). Schematic belief derivation did

not have to return any substitution, because there were no free variables.

For a slightly more complicated example, consider the following three clauses:

[5i]Qea
[S;] Pez, —[S;]Qex
—[Si](Pea A Qea)

Assume that the rules p(7) are strong enough to derive a conjunction from its two
conjuncts. Then by using rule R3 on all three clauses, and noting that Q(g(a)),

P(g(z)) Prf,?,-/)x} P(g(a)) A Q(g(a)), we derive a fourth clause.

[Si]Qea

[Si]POI, —[Si]Qez
ﬂ[Sg](Poa I QOCI)
[Si]C ea

By either rule Ry or R, the first and last clauses can be resolved to give the null

clause.

Section 12.1; Unification and Resolution 249

12.1.5 Soundness and Completeness

The soundness of Ky and Ry with respect to first-order semantics is shown
in Robinson [59]. To show that R3 is sound, we first prove the following lemma

about sets of belief atoms.

LEMMA 12.5. Let Z = {[S;]IT,—[S;]&} be a set of belief atoms of LIB" .
IfI1* B‘g(;) 1*, then every ground instance of Z9 is unsatisfiable.

Proof. I I* B—gm ", then by Theorem 12.4, for every normative

Herbrand model m and ground substitution fo we have [ITfo]?, Bo(i)
f60]%,. Thus in m either one of [r;8a]i, isn’t in bel(d;), or [¢a]i,
is. Hence Zfo is unsatisfiable.

THEOREM 12.6. The rule Ry is sound.

Proof. Let all parent clauses of K3 be satisfied by some normative
Herbrand model m. Let ¢ be an arbitrary substitution such that fo
is a ground subsitution. The set of ground instances of the parent
clauses under #o is also satisfied by m. By Lemma 12.5, one of the
belief literals ([S;]m;)80 or (—[S;]¥)fo must be false in m, and hence
one of A;80 or Afo must be true. Since this holds for an arbitrary
ground substitution o, every instance of the clause A6, A:14,... Anb
must be true in m, and since m is a normative Herbrand model, the
clause itself must be true in m.|Jj

The proof of completeness for first-order resolution has the following struc-
ture (see Chang and Lee [5]). Start by considering the unsatisfiable set of ground
ciauses that each unsatisfiable clause set gives rise to. This set has a finite closed
semantic tree. The tree, if it is not empty, has at least one inference node: a node
whose immediate successors are two failure nodes. The failed clauses are parent
clauses for a resolution, the result of which is a clause that fails at the inference
node or above. By doing successive resolutions of this sort, the closed frontier of

the tree can be reduced to the root node, yielding the null clause. The Lifting

250 Section 12.1: Unification and Resclution

Lemma then applies, showing that a resolution proof must exist for the original set

of clauses.

The proof of completeness of R follows this general line of argument. How-
ever, there are complications because failure nodes come in two flavors: those that
falsify a clause because they contain the negation of literals in the clause, and those
that falsify it because they contain a combination of belief literals that falsifies the
belief literals in the clause. For example, consider a failure node N immedijately
dominated by the belief literal [S;]P. Suppose this failure node falsifies a clause

= —|S;|P v A, where none of the literals of A is falsified by [5;]P. We call this
failure node a simple failure node (or SFN) for C, and -[5;]P its failing literal. If,
on the other hand, C' is of the form —[5;]Q v A, where P | ,(;y @, then the clause
is falsified by the properties of belief derivation, and we call N a complex failure
node, or CFN. CFN’s do not have the inference property that SFN’s do, because an
inference node dominating a CFN does not always lead to an immediate resolution
deduction that advances the frontier of the closed semantic tree. Most of the work
in the completeness proof is concerned with showing that, even in the presence of
complex failure nodes, there is always a finite sequence of resolution deductions
with the inference property. We do this by first exhibiting a system R’ that recovers
the inference property, and then showing that every deduction of the null clause in

R’ is also a deduction in R.

First we introduce some terminology for failure nodes and their falsifying
clauses. Let T be a semantic tree that enumerates the Herbrand models of L98°
for a fixed . Recal! from Section 11.3 that a falsifying node NV for a clause C is
such that every Herbra:ud model normative in » agreeing witk L(N} (all the literals
on the arc from the root of the tree to IV) falsifies C. A failure node is a maximal
falsifying node, that is, there are no falsifying nodes between it and the root. The
arc from the root to the failure node is called a failure arc; if N is a failure node,

we will abuse the terminology slightly and call the arc from N to the root N also.

Section 12.1: Unification and Resolution 251

A concept that is useful is that of the critical nodes a belief literal with
respect to a failure arc. Consider 2 failure arc N for a clause C = L, A. A critical
node for L is one that, if we removed the portion of the arc between it and its
parent, the arc would no longer falsify L. There may be several critical nodes if
L is a belief literal, and IV is a complex failure node for it. For example, suppose
P, Py... PyBpy;) @ and let N = [S;) Py, [Si| P2, - . . [S;]Pn be a arc. N is a failure

arc for the unit clause —[S;]@, and every node on N is a critical node.

If N is a dismissed node, it has no failing clause, but we can identify its
critical nodes in the following manner. Because N is a dismissed node, there is
some set of belief literals on its arc of the form {[S;] Py, [S;] P2, ... [S:]Pn, —[S:]|@},
where Py, Po...Pp oli) @. Each of these literals immediately dominates a critical

node of the arc.

We now develop the resolution system R’ for ground clauses. This system
uses a new notational device, the amalgamated belief literal.
DEFINITION 12.6. An amalgamated belief literal is an expression of
the form [S;{T'; a}. It is equivalent to the sentence [S;]y1 A [Si]y2 A
... A[Si}n A[Sila. Either I' or & may be absent, but not both. Ifa

is omitted, we write [S;]{I'} without the semicolon. An amalgamated
belief literal that is equivalent to [S;]p or —[S;)q is called simple.

It should be stressed that amalgamated belief literals are merely a notational
device, and do not introduce any new representational power into L98". The system
R’ is defined for clauses that use the new notation. Thus, in the input clauses, every

positive belief literal [S;|p has the form [S;]{p}, and every negative belief literal
=[Sila. [S3{ g}

DEFINITION 12.7. Let B-p(,-) be a belief derivation operator. The res-
olution system R'(Lg, p) has the following rules.

252 Section 12.1; Unification and Resolution

L, A
! NL, AQ . . .
R : oA where L is not a belief literal.
1, A2
[S,]{F, O’}, Al
[Sl]{n}! Ao . . -
: t .
Merge: [S]AT, T a}, Ay, A7’ where a is optional
S;{I'; a}, A
Reduce: m—f’l—a}’—, where I'® B o(i) a®

Remarks. These rules all involve ground literals only, so there is no need to in-
troduce unification or schematic belief deduction. The soundness of R} and Merge
follows from the rules of propositional logic; the soundness of Reduce is a simple
consequence of Lemma 12.5. R’ is also complete: if a set of ground clauses is un-

satisfiable, there is a deduction of the null clause. We now prove this.

LEMMA 12.7. Let N be an inference node whose daughters, M and
M', are falsified by clauses C and C', respectively. There is a resolu-
tion deduction in R' from C and C’ of a clause D that falsifies N.

Proof. In what follows, we write [¢],. to indicate the interpretation
of ¥ as a belief sentence in any Herbrand model whose identifier func-
tion for 5; is 7;. We can do this because ¥ contains no bullet terms,
and the function 75; is sufficient to define the interpretation of ¢ as a

sentence of L9B",

If both M and A’ are simple failure nodes, then an application or
Rhto C = Lv Aand C'=~Lv A yields the resolvent Av A’, which
falsifies IV.

Suppose at least one of the failure nodes is complex. Let M be
dominated by the belief literal [S;]g, and M’ by —[Silg. The gen-
eral form of the clause C' is [S;]{T;; a;} v [S;]{TT;} v A, and of C" it is
[Si]{Th; ehn} v[Si]{IT]} v A'. All of the belief literals are failing literals
for the respective nodes; both A and A’, on the other hand, are falsi-
fied by N. Through a succession of applications of Merge, the clause
D = ST, T} a5} v [Si{Tm, My alp} v [Si]{Tg, TIj} v A v A’ can be

Section 12.1: Unification and Resolution 253

produced, where there is one amalgamated belief literal for every com-
bination of indices 7,1, k,{, and k, m. We must show that D falsifies
N. We already know that A and A’ are falsified at V. Consider the
belief literal [S;]{T';; a;}. Let [Si]q, [S;]A; be its critical literals. Then
by definition [T';]n;, Aj,q B o) [2s]n;- Let —[Silg, [Si]A] be the criti-
cal literals of [S;]{IT;}, so that [Tl[]n;, A] Bp(;j ¢- By the transitivity
of belief derivation, it must be that [T jlp;, A, []n,s A7 By loslng-
Because the belief literals [S;]A; and [S;]A; are falsified by N, so is the
amalgamated belief literal [S;]{T;, Ij;a;}. A similar argument holds
for [S;|{T%,, Ty; o, } and [S;]{It, II]}. Hence every disjunct of D is
falsified by N.

Finally, we show that neither M nor M’ can be a dismissed node. If
they are both dismissed, then N must also be dismissed, because no
branch of N leads to a valid normative Herbrand model; this contra-
dicts the assumption that M and M’ were failure nodes.

Assume that M’ is a dismissed node dominated by -[S;]g. M is
falsified by some clause C = [S;|{T';; a;} v [S;]{IT} v 4, where A is
falsified by N. Let [S;lg,[S;]A; be the critical literals of [S;|{T ;; a;};
we must have [I';]y,, Aj, ¢ B () lajln;- Let [S{]A’ be the critical liter-
als of M, so that A’ B (i) 9- By the transitivity of belief derivation, it
must be that [T;]q;, Az, A’ B (i) [@;]n,, and the amalgamated literal
[Si{Tj; @;} is falsified by N. Similar arguments show that the literals
[S;]{T1} are also falsified by N. And, if we let M’ be dominated by
the positive belief literal [S;]g, essentially similar arguments also show
that any clause falsified by M is falsified by V. Hence N cannot be
an inference node.lj

This lemma shows that it is possible always to find a resolution deduction
using R'2 or Merge that advances the frontier of failure nodes. This leads directly

to the following completeness theorem.

THEOREM 12.8. (Completenessof R') If W isa set of ground clauses
of LIB®, there is a derivation of the null clause in R'.

Proof. By Lemma 12.7, there is always a sequence of resolutions that
advances the frontier of failure nodes of the semantic tree. Thus there
is some clause D that falsifies the root node, i.e., every Herbrand
model normative in 5. The only literals that are always false are

254 Section 12.1: Unification and Resolution

amalgamated belief literals of the form [S;}{I’; a}, where [[']y; B ()
laly;- By Theorem 12.3, it must be the case that I'® § ;) a®, and the
Reduce rule applies, yielding the null clause.ll

An important point to emerge from the proof of completeness is that there is
alwayvs a deduction of the null clause from inconsistent W such that Reduce rules,
if any, are all applied at the end of the deduction. We now seek a “normal form”
for this deduction. It is first necessary to prove some lemmas on the commutativity

of the order of R} and Merge applications.

LEMMA 12.9. Let Cy be derived from the input clauses Cy, Cs, and
Cs by first applying R}, to Cy and Cy, then applying Merge to Cs and
the result. Then there is a derivation of C4 from the input clauses in
which the Merge rule is applied after RS,

Proof. Let Cy = [S;){[;a} v 41, C; = [S;}{IT} v A3, and C' =
[S;{T',IT; a} v Ay v Ao the result of the Merge operation. Let C3 =
Lv A, where L is the literal to be resolved on. ~L is in one or both
of Ay and Ao; let A} and A} be these sets with ~L deleted. Then
Cy = [Si{T, I a} v A} v A, v A.

To generate Cy starting with applications of Rj, consider first Cy. If
it contains ~I, then resolve it with C3 to produce C} = [S;|[{[';a} v
A} v A; otherwise, let G} = Gy. Do the same for Cy, defining C5.
Finally, merge C] and C}, with the resolvent [S;}{[', ITl;a} v A} v AL v
A=Cy.l

The order of successive Merge’s may also be commuted.

LEMMA 12.10. Let Cy be derived from the input clauses Cy, Co, and
Cy3 by first applying Merge to Cy and Cs, then applying Merge to Cy
and the result. There is a derivation of C4 from the input clauses in
which Cz and Cs are first merged, then the result is merged with C,.

Proof. Let C1 =Liv Ay, Co=LavKov A, and C3 = Lzv A3. Let
C! = L1av Kov Ay v Ap be the result of merging C; and C> using the
literals L; and Lo, and Cy = Lo v Log v Ay v Ap v A3 the result of
merging G’ and Cj using literal Ko and Ls. If we merge C3 and Co
first, we obtain the clause C" = Logv Lo v Ap v As; if we merge C"
with C; the result is Log v L1av A1 v Ao v Az = Cy.

Section 12.1: Unification and Resoclution 255

If Lo and Ko are not distinct, the same proof will go through, except
that, in the final clause Cy, there will be an amalgamated belief literal
L1293 composed of elements of Lj, Lg, and L3.1 ‘

We are now in a position to show that the system R can perform any deriva-
tion that R’ can. The way we do this is to indicate how a certain type of proof in
R!, a normal form proof, can be converted to a proof in R. By “normal form” we

mean a proof that has the following characteristics:

. All R, deductions precede every Merge or Reduce.

2. All Merges precede all Reduces, and they produce a single
clause D = [S;[{T'j;@;} containing only inconsistent amalga-
mated belief literals.

3. The tree of Merges leading to D can be reordered so that all
merges that involve the literal [S;]{T'1; @1} are done after every
other merge. There is thus a frontier of the merge tree Cy ... Cy
s.uch that Cy = [Si]{II1; 01} v Ay and C; = [S;{II;} v Aj for
j > 1, where 'y = U;-":ll'[j, and every element of A; is an
inconsistent amalgamated belief literal.

4. We repeat the reordering process above for each of the clauses
C1 through Cy, choosing an inconsistent amalgamated belief
literal from each. C7 through Cy, are inconsistency nodes, with
the chosen literal called the inconsistency literal. The reorder-
ing process is continued recursively to the leaves of the tree,
until the tree consists of subtrees dominated by inconsistency
nodes,

. A normal form proof is always obtainable for an unsatisfiable clause set W.
Starting from the deduction tree obtained in the proof of Theorem 12.8, the Merges
and R) applications are reordered (by Lemma 12.9) so that the latter always occur
first. Then the merges are reordered (by Lemma 12.10) to conform to conditions 3

and 4.

THEOREM 12.11. If the null clause can be deduced from the ground
clauses W in R', it can be deduced from W in R also.

256 Section 12.1: Unification and Resolution

Proof. Let P! be a normal form proof in R’. We will convert P/ into
a proof P in R, since the proof P has essentially the same structure
as P'.

Each application of R} in P’ is converted into a parallel application
of R in P. To see that this is possible, note that the applications
of R}, use omnly clauses that have simple amalgamated belief literals.
Because Rﬁ is an instance of Ko, these resolutions can be incorporated
directly into P.

We have suceeded in converting the bottom part of P'; up to the
frontier where merges begin, P’ and P are identical. Because P’ is
in normal form, the merge part of the tree is segmented into subtrees
dominated by inconsistency nodes. Choose a lowermost subtree, I.e.,
one whose leaves do not contain any inconsistency nodes. The frontier
of this subtree consists of clauses of the form Cj = [Si]{;q} v A{ and
C; = [Sil{p;} v A; for j > 1; the dominating node of the subtree is
C' = [S;{p2,p3,...;9} v A1 v A2 v Because the first literal of
C' is inconsistent, there is a deduction using R3 of the clause C =
Apv Az v ... from the clauses C7 and C;. In P, we replace the
complete subtree of P’ dominated by C’ with the clause C. Note that
C is different from C’ in that the inconsistent amalgamated belief
literal is removed. Continuing in this manner, all the subtrees of P’
can be replaced by instances of R3. At the root of P will be the
null clause, because the tree of merges is rooted in a clause consisting
entirely of inconsistent amalgamated belief literals.

As a consequence of the last two theorems, R is provably complete on ground

clauses,

COROI.,LARY 12.12. IfW is an unsatisfiable set of ground clauses of
LaB , there Is a deduction of the null clause from W in R.

Because every set of unsatisfiable clauses has a finite unsatisfiable subset of
instances (Theorem 12.2), there always exists a ground deduction of the null clause
from these instances. We now show that the Lifting Lemma holds: for every such
ground deduction there is a deduction of the null clause from the original clause

set.

Section 12.1: Unification and Resolution 257

LEMMA 12.13. Let &' =4 L' v A' be a ground instance of the clause
C =4; Lv A. Then there exists a ground substitution 8 such that
either A8 = A’, or there is a factor C"" = L"v A" of C with A"§ = A'.

Proof. Let Co = C', since C' is an instance of C. If Ac = A, the
theorem holds; so assume Ag # A’. The only way this could happen is
if there is some set of literals Ly, Lo, ... Ly in A such that L;o = Lo.
Then ¢ is a unifier of the literals L, Ly, ... Ly, and there is a most
general unifier 8’ of these literals. By the factoring rule Ry, there is a
factor C" = C#' with the requisite property.§

LEMMA 12.14. (Lifting Lemma) Let C;- be ground instances of the
clauses C;. If rule Ry or Rz derives C' from C;-, thep there is a
deduction involving the same rule on the clauses C; (or perhaps their
factors) that derives C such that C' is a ground instance of C.

Proof. For Rs, let C; =45 L1, A; and Cp =4 C2 be two clauses,
with G} =q; L}, A} and C} =4; L}, A} two of their ground instances.
Suppose there is a deduction

1oal
i

Ry 27

A1 Az

using the ground clauses as input. Define C;-’ =41 L;?, A;-' in the fol-

lowing way: if AS,- is an instance of A4;, then C;-' = C}; else let C;-' be

a factor of C; such that AS- is an instance of A;f (by Lemma 12.13,

this factor must exist). Now the literals L and ~L must unify, be-
cause they have instances L} and ~ L§, which must be identical for the
foregoing deduction to occur; let Lg-aj = LS- be the relevant ground
substitutions. We have assumed that all variables of the clauses do
not conflict, so that, if we define o = o109, we still have L;fa = L;-.

Let 6 be the most general unifier of L] and ~LY; because § > o, there
must be a substitution A such that ¢ = 8A. Now there is a deduction

"ol
Ll 3 Al

noall
L3, A5

R, 2242
2 Ale, Allg

258 Section 12.1; Unification and Resolution

with AJ0X, AJOA = Af, AS.

For R3, let C; =4 [S;]m;, Aj and C = =[5]¢, A be a set of clauses,
with C} =g 5]}, A} and O/ = —[S;]w!, A’ a set of their instances.
Suppose there is a deduction

[Sf]TrL Arl
[Silﬂé: A'2

[S:']W:?_,A:.L
_'[thbft A
Al Ai, .. AL

with 73,...75 B,() ¥°* Again we define the clauses C" and CJ’-" as

either the corresponding unprimed clause or its factor, so that A's =
A’ and Agfaj = A;-. Let o/ = 00y02.. .05 be the composition of these
subsitutions; since the variables of the clauses do not conflict, we still
have A"¢! = A’ and A;-’J' = A;-. Because schematic belief derivation
is complete, there is a substitution # such that »{°...x2* B'g(:') Tk

with @ > of. Hence there is a deduction

[S]7f, AY
[Silx5, AS
[Sf]ﬂ';{s Ag
(S, AT
a%g, A, ... AL

R3

with A’ A7, ... A" an instance of the resolvent.§’

We now prove the completeness theorem for R.

THEOREM 12.15. Let W be an unsatisfiable set of clauses of L9B",
There is a deduction of the null clause from W using the rules of R.

Proof. By Corollary 12.12, there is a deduction of the null clause
using a finite set of ground instances of W. If P is a proof tree for the
ground case, we can construct a proof tree P’ using the clauses of W
as follows. Starting at the leaves, we replace the ground instances by

Section 12.2: Resolution Systems for Schematic Belief Deduction 259

their dominating clauses. Then for every Ry and R3 deduction from
the leaves, there is a corresponding deduction using the dominating
clauses by the Lifting Lemma. The resulting resolvents have instances
that are the corresponding resolvents in P. Continuing in this way,
the tree P’ can be generated, with each corresponding node in P being
an instance of the node in P!. Finally, since the root of P is the empty
clause, so is the root of P'.}

12.2 Resolution Systems for Schematic Belief Deduction

In this section we define a form of R that characterizes the belief deduction
process itself as a resolution system. Called RK, it uses resolution rules similar to
those of Definition 12.5 for the agent’s rules p. A key technique here is the use of

answer extraction to make §- oli) 2 complete schematic belief derivation operator.

In this system, we make also make use of the view indexing technique that
was part of B and qB. That is, since the outside observer and the agents are assumed
to have similar proof methods, we simply index particular parts of the proof by a
view to indicate what their status is: proving general facts about the actual world,

or deriving beliefs in an agent’s view.

12.2.1 Answer Extraction

Answer extraction is a technique whereby more information is recovered from
a resolution proof than the simple conclusion that the input clauses are unsatisfi-
able. It was formulated originally by Green [16], and has the following motivation.
Assume that there is some existential sentence 8 = 3x.9 whose validity we wish
to show relative to a set of premises; and further, we wish to know for which in-
dividuals x the formula ¢ is actually valid, i.e., ¥¥ is valid. One possible method
would be to insert particular terms for each of the free variables in 4, and then try
to prove the validity of the resultant instance. However, resolution methods afford
a more efficient approach. If we negate ¢ and put it into clause form, the resul-

tant clauses will contain the universal variables x. We now append these clauses to

260 Section 12.2: Resolution Systems for Schematic Belief Deduction

clauses produced by the premises, and attempt to show the whole set unsatisfiable.
At each resolution step, we make note of the substitutions that are performed on
the variables x (and if these are changed to new variables, we must keep track of
that too). If the null clause is derived, then the substitutions for x will be the most
general ones that could have been initially made, while still being able to complete
the proof. Thus along with a proof comes a substitution for the originally existen-

tially quantified variabies.

In practice, this process of “answer extraction” is implemented by conjoining
an answer predicate to the matrix of the existential sentence whose validity is in
question. Thus the sentence s above would be changed to s’ = Ix.(3 A ANS(x)).
In clause form, the negation of s’ would have an ANS-literal in each of its clauses,

e.g., if ¥ = P(x) v @(x), then there would be the two clauses

e
L3

, ANS(x)
Q@(y), ANS(y)

Note that the original variables have changed names in the second clause, and the

answer predicate reflects this change.

In performing resolutions, the substitutions that are made for the original
existential variables of s are always inserted into the answer predicate of a clause.
If a singleton clause containing just this predicate is ever derived, then the resolu-
tion proof has succeeded, and the values of the answer pedicate’s arguments are a

substitution that makes the existential clause valid.

We will use the technique of answer extraction, but modify the original for-
mulation slightly to take into account the demands of schematic belief derjvation.
Recall that the input to this derivation is a set of premise formulz H and a for-
mula to be proven %; any of these formulae may have free variables, although no

two formul share the same free variable. First we form the variable sequence x

Section 12.2: Resolution Systems for Schematic Belief Deduction 261

consisting of just these free variables. We then put the set of formulae {II, -%} into
clause form, making certain to keep the original names of the free variables in all
atoms. To each clause that contains such an atom, we add the atom ANS{x). We
now apply resolution rules as usual. If at any time the singleton clause ANS(r) is
deduced, then belief derivation has succeeded with the substitution {r/x}. We call

the proof derived by this method an answer-predicate analog of the original proof.

Example. Suppose we are trying to perform the derivation Yy.(Py > Q(y, b)),
P(g(z)) B-z(:.] Jy.@(g(a), y). There is one free variable, z. The clause form is

Py, Q(y,b)
P(g(x}), ANS(z)
_'Q(é(a): y)

The only clause with an atom that originally contained a free variable is the second,
and we add the literal ANS(z} to this clause. Proceeding with resolution, we apply

Ro to the first and second clauses, producing

~Py, Q(y, b}
P(g(z)), ANS(z)

_'Q(é{a)! y)
Q(4(z), b), ANS(z)

This last clause can be resolved against the third, yielding the singleton clause
ANS(a). There is thus a proof of 3y.Q(g(a), ¥) from the premises, given the sub-

stitution {a/z} for the original free variable z.

Although it was necessary to carry through the free variables unscathed in
creating the original clause form, once the answer predicates have been added it is
possible to change the variable names without affecting the outcome of the proof.
It is the position of the variable within the answer predicate that encodes which

original free variable is being substituted for.

262 Section 12.2: Resolution Systems for Schematic Belief Deduction

The technique of answer extraction is applicable to any resolution-based
deduction system. We use it in the following sections to convert ordinary belief
derivation processes into schematic ones. The key theorem about answer extraction
is that it is complete: every ground substitution that leads to 2 proof will be

included in some substitution returned by the answer-extraction technique.

THEOREM 12.16. Let Il be a set of clauses with schematic variables
x, and § = {r/x} a ground substitution. Let R be a set of resolution
rules for which the Lifting Lemma holds. If there is a resolution proof
using R of the set 118, then there is an answer-predicate analog that
returns a substitution &' > 0.

Proof. Suppose there is a derivation of the null clause from I'4. Be-
cause the Lifting Lemma holds, there is a derivation of the null clause
from II. If we append the answer predicate ANS(x)} to each clause
of II, this derivation will still be valid in its general form, but in-
stead of deriving the null clause, it will derive a clause of the form
ANS(ry), ANS(72),.... 8 will be a unifier of these answer predicates,
so 2 most general unifier ¢ exists, with 6’ > 6.

The proof of this theorem depends on the Lifting Lemma holding for the
resolution rules of belief derivation. It should be obvious from the above theorem
that, by using the answer extraction technique, it is possible to turn simple belief

derivation using resolution rules into complete schematic belief derivation.

12.2.2 The Resolution Family RK

In forming the family of systems RK(Lg,), we make the choice of a resolution-
based refutation system for §,(;;. We also stipulate that the resolution rules o,
whatever their form, conform to the Lifting Lemma, so that they are amenable to
answer extraction. In general, the rules ¢ will be modifications of the rules R;—
R5 of the system R. For example, we can stipulate a unit resolution system or a
rule-based deduction system, both of which are incomplete but efficient resolution

methods (see Section 12.3 below).

Section 12.2: Resolution Systems for Schematic Belief Deduction 263

To form the family RK, we define the derivation Il B-g ¥ in precisely the
way we did in the previous subsection, namely, as a refutation of the clause form
of {Il, ¢} with answer extraction, using the rules . We also modify the rule R3
of Definition 12.5 so that the individual steps of belief derivation become steps of a
proof in RK. To do this, it is necessary to index these steps by the view, in a manner
similar to that in BK. A resolution-based refutation proof begins with a finite set
of input clauses, and consists of a series of inferences, each of which derives a new
clause, until the null clause is derived {or, in the case of answer-analog proofs, until
a singleton answer literal is derived}. In performing a belief derivation within an
ongoing refutation proof, we introduce a subsidiary structure of the same sort, called
a view window, that contains its own set of input clauses and resolution inferences.
Each view window is indexed by the particular view in which the belief derivation is
taking place. In addition, it has the set of answer variables that are in force during
the derivation, and an answer clause that will be returned if the proof succeeds. To
sum up, we introduce the following definition.

DEFINITION 12.8. A view window w is a tuple {(v,x,C,W). v isa

view, C' is a clause (the answer clause), X is a sequence of variables of
C' (the answer variables), and W is a set of clauses (the input clauses).

There are four operations on windows that are appropriate for RK.

1. Creating a window. A window can be created based on a clause
with a negative belief literal. For example, if =[S;]¥, A is a
clause, then a window for this clause would be {7,x, A,W),
where x are the variables of A, and W is the clause form of
the bullet deletion transform of —7. If a refutation proof is
ever found in this window, it constitutes the discharge of the
negative belief literal, and the clause A can be returned as a
valid deduction. This corresponds to the application of rule R3
with a single premise.

2. Adding positive belief literals to a window. If [S;]n', A' is a
clause containing a positive belief literal, then any window
w = {i,x, A,W) with view 7 can be enlarged by converting
7' into the set of clauses W’/ and converting w into o’ =

{i, {x,x'}, {4, A"}, (W, W"}), where x’ are the variables of A’.

264 Section 12.2: Resolution Systems for Schematic Belief Deduction

The ANS predicate would have to be modified every place it
appeared in W, because if x' is nonempty, it will have more
arguments. '

This operation corresponds to application of the rule R3 in
which there are premises with positive belief literals.

3. Rule application in a window. The set of clauses W of a view
window can be enlarged by application of one of the rules ap-
propriate to that window.

4. Returning an answer. I the clause set W of a window w =
{1,x, A,W) contains a singleton answer literal ANS(r), then
the clause A{r/x} can be returned as a deduction.

It should be clear that, in the case in which B is taken to be a resolution-
based refutation system, the application of the four operations above generates the
same inferences as the rule R3. For suppose there is an Instance of R that derives
the clause Af, A6, ... from the premises —[S;]¥, A, [S;]71, 41, Then there
must be a refutation proof that returns 8, using the bullet deletion transforms of
the belief arguments. This proof can be reconstructed using operations on windows
in the following manner. First the window is created using the clause =[S;]¥, A4,
and then expanded using each of the clauses {Sijr;, A;. The rules o(i) are next
applied as many times as necessary in the window to generate the proof, and finally

the clause A¢, 448, ... is returned.

In the opposite direction, any time a result clause is returned from a window,
there is an application of R that would also produce the clause. The premises of
R3 are all of the clauses that went into the creation and expansion of the window;
the derivation is the sequence of rule applications in the window. It should be
noted here that derivation in windows is insensitive to the order of expansion of the
window in the following sense: in any derivation of the answer predicate, there is
a corresponding derivation in which all of the expansions take place before any of

the rule applications.

The parallel between window operations and the alternate formulation of

resolution using the Merge and Reduce rules of R’ should be noted, although we

Section 12.2: Resolution Systems for Schematic Belief Deduction 265

have defined the latter only for ground clauses. When looked at in this manner,
the clause [S;]{T;a}, A is simply a view window whose input clauses are derived
from I'* and (—a)®, and whose answer clause is A. The Merge rule introduces more
positive literals into a window, and also adds to the answer clause. The Reduce
rule corresponds to a successful derivation in the view window, returning the answer

clause as a result.

We can now give rules for the system RK(Lg, o).

DEFINITION 12.9. Let o be a resolution rule ensemble. The system
RK(Ly, o) has the following rules.

1. The rules Ry and Ry of Definition 12.5.
2. The four rules for windows in Definition 12.8.

Example. We take the rules o{{} to be the ordinary resolution rules R; and R for
each agent. Let B be the set of sentences (of L95)

Jz.-[5;] Q=
Vzy.(—Rzy > {S;]Pz)
Vr.[S](Pz > Qz)
Vz.3y.—Rzy

(12.1)

In clause form (translating to L"B.) this yields the six clauses

—1;a,=[5{]Qea
[S;|Pez, Rzy
Iz, Rzy
[S;](Pez > Qez)
Iz

~R(z, {(z))

(12.2)

266 Section 12.2: Resolution Systems for Schematic Belief Deduction

Using the fifth clause, we can eliminate the predicate I;a from the first clause.

—I;a,—[S{|Qea

[Si]Pez, Rzy

Iz, Rzy

[S;](Pez o Qez) (12.3)
Lz

~R(z, f(z))

~[S;]Qea

The last clause can be used to start a window with view ¢. We will write these
windows as a set of clauses preceded by a line indicating the view v, answer variables

zbar, and return clause C, in the form view 7 : x, C. In this instance, there are no

answer variables, and the clause to return is empty:

view : 0,0

—Q(g(e))

We now add the belief literal from the fourth clause of {12.3) to the window.

view £: 0,0
~Q(j(a))
~P(§(2)), Q(4(2))

It is important that the same function § was used in converting the bullet terms for

the added clause. There is still no return clause or answer variables.

There is a resolution that can be performed in the window, and that is done

next.

view 1 : 0,0
~Q(g(a))
~P(g(2)), Q(4(z))
- P(g(a))

Section 12.3: Unit Resolution and Rule-based Deduction Systems 267

Using the belief literal of the second clause of (12.3), we add another clause to the

window.

view ¢ : z, Rzy
-Q(g(a))
—P(§(2)), Q(§(2))
—P(g(a))
P(g(z)), ANS(z)

The singleton clause Rzy has been added as the return clause of the window, and

the answer variable is z. A final resolution step yields a singleton ANS clause.

view ¢ : z, Hzy
~Q(d(a))
=P(§(2)), @(§(2))
=P (j(a)) (124)
P(g(z)), ANS(2)
ANS(a)

At this point, the window proof has succeeded with the substitution {a/z},

and so the clause Ray is returned to the original set of clauses in (12.2).

—1;a,-(S5;|Qea
[Si| Pez, Rzy
Iz, Rzy
[Si](Pez > Qez)
Lz

~R(z, [(z))
~[5/1Qea

Ray

The sixth and the last clauses can be resolved to yield the null clause (the

substitution is {a/z, f(a)/y}).

268 Section 12.3: Unit Resolution and Rule-based Deduction Systems

12.3 Unit Resolution and Rule-based Deduction Systems

Unit resolution is a refinement of resolution in which we consider only those
resolvents that have a unit parent clause (Chang and Lee [5], p. 133). Unit resolu-
tion is an efficient strategy, because it always produces resolvents with fewer literals
than its largest parent. However, it is an incomplete rule: there are some valid
sentences that cannot be proven by unit resolution. Rule-based deduction systems
can be viewed as a refinement of unit resolution in which control information about
which resolutions are to be performed is encoded by the syntactic form of the ax-

ioms. We give an example of a simple system of this type.

12.3.1 Unit Resolution for RK

Unit resolution can be incorporated into R by defining an appropriate re-
finement of R3, and achieves a particularly simple and efficient form of this rule.
The basic idea is to make all but one of the parent clauses unitary. There are two
cases to consider:

[Si]m
[S;]me

[Siiﬁ'n
~[Si]¢, A

Ré: A0

8
, where m},...,m By ¥°

[Si]7m1, A
[51'1772

lsiiffn
—[Si]Y

R : A0

, wherer],... 7 B'g(i) P*

In both these rules there can be any number of positive belief atoms. These
atoms essentially comprise a base set of beliefs that can always be used in the

belief derivation process that is incorporated into the resolution rule. Given these

Section 12.3: Unit Resolution and Rule-based Deduction Systems 269

belief atoms [S;]T" as background information, the two foregoing rules reduce to the

following simple form:

R} : i‘%ﬁﬁ , where T* g0 ¥*
[Si]m, A
RY: ——l[j;hb , where F*, 7* B'g(:‘) »*

As with unit resolution for first-order languages, the rules R} and Rg always return

a resolvent that is shorter than the largest of their parent clauses.

We can modify the window rules of RK to reflect the unit resolution refine-
ment of . We do this in two parts: the rules of RK that create and expand windows
are changed so that only unit resolutions of R3z are performed; and rule applica-
tion within a window is restricted to unit resolution, thus interpreting } as unit
resolution. The resulting system is called RKu. Its window rules are as follows:

la. Rule R;. A window is created from —[Si], A in the normal

way.

1b. Rule R. A window is created using the unit clause —[S;]# and

the clause [S;]m, A. The answer clause is A, and the input clauses
of the window are formed from the bullet deletion transform of
T A

2. This is the same as the original, with the restriction that only
unit clauses [S;]7' may be used.

The resolution rules applied in the window are unit resolutions.

4. Same as the original.

Remarks. There are two creation operations, corresponding to the two forms of the
unit resolution rule for belief literals. In the second window operation, the addition
of positive belief literals is restricted to unit clauses. With these modifications, it can

be easily shown that the window operations generate the same inferences as the unit

270 Section 12.3: Unit Resolution and Rule-based Deduction Systems

resolution rules R:’; and Rg , when } is assumed to be a resolution-based refutation
system. Note that, because of the restriction in the second window operation to
unit clauses, the answer clause will always be shorter than the longest input clause

used to create the window.

Example. We will use the same input clauses (12.3) as in the previous example.

—Ia, =[S;|Qea
[S;]Pez, Rxy
I;z, Rzy
[S;](Pez > Qez)
Ii:l:

~R(z, f(z))
—[S5;]Qea

The second and last clauses can be used to start a window with view 7, according to
(Ib). The clause to return is the unit clause Rzy, and the answer variable is z. We
also add the third clause, which is a single positive belief literal, as a background

belief.

view i : z, Rzy

—-Q(j(a))
P(3{z)), ANS(z)

—P(g(y)), Q(g(y))

At this point we perform two unit resolutions within the window, and derjve a

singleton answer clause.

view i : z, Rry
—Q(g(a))
P(g(z)), ANS(z)
—P(g(y)), @(4(y))
—P(g(a))
ANS(a)

Section 12.3: Unit Resolution and Rule-based Deduction Systems 271

This is the same window as (12.4), and the proof is concluded as in the previous

example.

12.3.2 Rule-Based Deduction Systems

The currently favored technology for deduction in Al systems is rule-based
(Nilsson [54], Chapter 6). Rule-based systems are efficient, easy to understand, and
allow the incorporation of domain-specific knowledge to guide deductions. Their
primary characteristics are:

1. Sentences of the system are divided into two classes: facts
about the world, and goals to be proven.

2. Sentences need not be in clause form, although they usually
have prenex universal quantifiers and are skolemized.

3. Facts whose main connective is material implication are treated
as rules: forward-chaining rules that derive new facts from old
ones, or backward-chaining rules that derive new subgoals from
old ones.

4. Matching of goals and facts to rules is a key operation; it makes
the application of rules similar to unit resolution.

Because of the distinction between facts and goals, rule-based systems can
be viewed as having the proof structure of block tableaux. In the sequent I' = A,
we can interpret I' as being a set of facts, and A a set of goals. A proof in a
rule-based system is simply a closed tableau, in which the sequent to be proven is
the root of the tableau. However, the tableau rules that are employed are different
from those we have seen in the system Tgp, and are based on the notion of matching

(unification) and the use of implications as rules.

To illustrate these ideas, and to show how to accommodate belief derivation
in this paradigm, we present a simple rule-based system. All sentences are assumed
to be in prenex normal form, with existential quantifiers skolemized. We use a

reverse implication sign “c”; it has the meaning pc g = ¢ > p.

Axiom. =8 A

Section 12.3: Unit Resolution and Rule-based Deduction Systems

%]
-]
b3

L;,T = LonAA

. if L,0L
MA L, T = Lon A, A0,A° 1917
Ll LQDA,F:‘PA .
: ! f L6 L
Fe L, Lo A AT = A 1052
A
BC: LicAl= Lo, if Li6Lo

Lic AT = Ly, A0, A’

Remarks. All these rules use the basic matching operation of unification: L{fLs is
true when # is the most general unifier of the literals Lj and Lg. The single axiom
schema gives the closure condition for tableaux—the null clause appears as a goal.
The matching rule MA is used to break down conjunctive goals and to derive the
null clause from singleton goals. Forward chaining is accomplished by the rule FC,
which generates new facts using forward implications. BC does backward chaining;
note that the way in which the implication is written {normal or reversed implication

sign) makes the difference in whether it is used to forward or backward chain.

The forward and backward chaining rules are simple variations of unit res-
olution, given that an implication L > A is equivalent to the disjunction ~L v A.
Chaining rules differ from unit resolution in two ways. First, A need not be a dis-
junct of literals, but the unit resolution principle holds just the same: ~L v 4 and
L' will derive the sentence A#, if 6 is the most general unifier of L and L. Second,
chaining rules. give more control over which literals are unified, and what happens
to the resultant resolvent. Moore [50] has indicated how this control can be used to
govern the pattern of deductions made, and make domain-specific inferences more
efficient. Note that the control resides in the way the axioms are written for the
domain, not in the tableau rules FC and BC. For this reason, rule-based systems

have been called procedural deduction systems.

The rules just presented are relatively simple in that they do not specify

what to do with more complicated types of goals, e.g., conjunctive goals that do

Section 12.3: Unit Resolution and Rule-based Deduction Systems 273

not match any fact literal. The way in which different rule-based systems handle
these complexities is often an interesting and important part of these systems, and is
another characteristic that distinguishes them from standard resolution refutation
procedures. In the case of conjunctive goals, splitting is a popular technique: two
sequents are generated, each of which must be proven in order to prove the original
sequent (note the similarity to the conjunction rule Co of Ty}. However, to a large
extent these concerns are independent of the problem we address here, which is
how to accommodate belief literals in forward and backward chaining rules. For

illustration purposes the foregoing rules are adequate.

We note one modification of the rules that will be useful. Answer extraction
can be accomplished by conjoining a phantom ANS-predicate to the initial goal.
This predicate is never “seen” by the axioms or rules, but every time a substitution
occurs, the answer variables are updated. If the tableau closes, the ANS-predicate
will have the requisite substitution for the variables of the input sentences of the

proof.

Now we would like to write rules like FC and BC that use belief literals in
the matching process. As we have seen in developing R, the appropriate matching
operation is not unification, but schematic belief derivation. By noting the close
resemblance between rule-based deduction and unit resolution, we can use the two

rules R'é and Rf to derive two forward-chaining and two backward-chaining rules.

[S,-]F, L= [Si]'ﬁb A A, _'[Sl']As A

e Aepf .
MAb. [S;]F,E = A4, [S,]‘l,b AA, —l[S;]A, A’ it e, A B‘l’(") v
. [Sthb D A, [S,']P, L= _'[Si]As A cee Awpl .
rob 519 5 A, ST, A0, = ~[s3a, A0 1A B ¥
FCby: —[SiY, —[Silm o A, [SiT, E = —[Si]A, A

—v[S,-]'qb, —|[S,']7r - A, [S,']P, Aﬂ, Y= —l[S;]A, A’

if 7%, 7%, A® Bug(,.) P*

274 Section 12.3: Unit Resolution and Rule-based Deduction Systems

[Si]w < A, [SiT, E = [S]¢, ~[S;]A, A

. e o8 Te epf .
B Bilrc AISINE = Bl Ao sia,n0 T A By ¥
. S[Si] < A, (ST, E = —[S5{]A, A e e Aepf .
BCb2 —|[SI]¢ C A, [S,]F, Y= AG, _I[S£]A, A’ if T ’A B_ﬂ(:') w

Remarks. The matchihg rule MAD for belief literals is a straightforward use of the
resolution rule R3, where the clauses are all singleton belief literals. The first two
sequent rules implement forward chaining. By converting [S;]¥ > A to —[S{]¥ v A,
the correspondence to the unit resolution rule Ré is easily seen, where every parent
is a unit clause except —(S;]¢ v 4. Note the presence of the background facts
[S;]T" and background goals =[S;]A. The second forward rule is similar, but comes
from the unit resolution rule RS, in which the nonunit clause contains a positive
belief literal. The implementation of backward-chaining is done in an analogous
manner. Note the complete symmetry here: for each independent choice of positive
or negative belief literal to match, and forward or backward direction, there is one

r:le.

We now define the system RB, a rule-based system for the language of qB.
In RB, we take the belief derivation operator § itself to be a rule-based deduction
system with ANS-predicate capability. Note that this type of system gives use
a large amount of fiexibility in specifying deduction strategies for agents, even if
the tableau rules are fixed, because most of the control information resides in the
implicational facts agents have.

DEFINITION 12.10. The system RB is a block tableau system with
the following elements.

1. The null sentence axiom and rules MA, FC, BC, MAb,
FCby, FCbg, BCby, and BCbs.

2. Belief derivation in each of the rules FCby, FCb;, BCb;,
and BCbs is rule-based deduction, where the rules p(7)
of each agent are the rules (1).

Section 12.3: Unit Resolution and Rule-based Deduction Systems 275

Example. We again use the same example, starting with the sentences (12.1).
Because they are already in prenex form, we can skolemize all existential variables,
and eliminate the leading universal variables. We let the first sentence be the goal,

and the rest be facts.

Facts Goals
1S;|Pez € ~Rzy ILiaA[S;]|Qec
I;z ¢ = Rzy

[S;](Qez c Pex)

Iz

~R(z, £(2))

These sentences are in almost the same form as the originals. We have chosen to use
backward chaining for the implications, and so have used the reverse implication
sign. Note that we have split the second sentence of 12.1 into two backward-chaining
rules, instead of having a conjunction as the matching part of the reverse implica-

tion.

Lists of facts and goals are a nice alternative notation for sequents (these are
the analytic tablean of Beth in [63]), and we use it now in preference to the latter.
Whenever we apply a sequent rule of RB, we simply add to the lists. The first rule

to apply is the matching rule MA, reducing one of the conjuncts of the goal:

Facts Goals
[S;|Pex c =Rzy I;a A[5;]Qea
Iix ¢ ~Rzy [S;|Qea
[S;]{Qex c Pex)

Iz

—R(z, f(2))

We can apply the backward-chaining rule BCby, using the second goal and the first

two facts. To do this, we open a view window to show that the relevant belief

276

derivation goes through.

view i : x, " Rzy

Iracts

Pj(z) v ANS(z)

Qily) < Pi(y)

Section 12.3:

Unit Resolution and Rule-based Deduction Systems

Goals

Q4(a)

"The backward-chaining rule BC applies here, and we generate a new goal.

view 7 : z, " Ray

cts

Qily) < Pgly)

Iy
Pj(z) v ANS(z)
(

Goals

Q¢(a)
Pé

By the matching rule MA, the tableau closes with answer predicate ANS(¢), and

so we return from the window with —Ray. The rule BCb; has been successfully

applied, and the original list of goals is augmented by the result.

Facts

[S;|Pez ¢ —Rzy
I;x € ~Rxy
[S;](Qez c Pex)
Iz

R (2, [(2))

Goals

Lia A [5]Qea
[S;]Qea

- Ray

Finally, the matching rule MA applies, and this tableau also closes.

13. Conclusion

13.1 Summary

We have explored a formalization of a computational paradigm of belief called
the deduction model. It is interesting that the methodology we used was to examine
the cognitive structure of Al planning systems. This methodology, which we might
term robot psychology, offers some distinct advantages over its human counterpart.
Because the abstract design of such systems is open and available, it is possible
to identify major cognitive structures, such as the belief subsystem, that influence
behavior. Moreover, these structures are likely to be of the simplest sort necessary to
accomplish some task, without the synergistic complexity so frequently encountered
in studies of human intelligence. The design of a robot’s belief subsystem is based
on the minimum of assumptions necessary to ensure its ability to reason about
its environment in a productive manner: namely, it incorporates a set of logical
formulas about the world, and a theorem-proving process for deriving consequences.

The deduction model is derived directly from these assumptions.

The deduction model fits within that finely bounded region between formally
tractable but oversimplified models, and more realistic but less easily axiomatized
views. On the one hand, it is a generalization of the formal possible-world model
that does not make the assumption of consequential closure, and so embodies the

notion that reasoning about one’s beliefs is resource-limited. On the other hand,

278 Section 13.2: Future Directions

it possesses a concise axiomatization in which an agent’s belief deduction process
is incorporated in a direct manner, rather than simulated indirectly. Perhaps the
most fruitful idea in the thesis is to take the computational nature of agents’ rea-
soning seriously, to such an extent that it becomes an integral part of the logics
describing belief. In the tableau methods of Chapters 3 and 9, the belief deriva-
tion operator is used as part of the attchment rule that deduces consequences of
statements concerning belief. If we have such an operator in hand, for example the
particular proof process used by an agent reasoning about a specific domain, then
we can simply “plug it in” to the deduction logic to produce a formal system that
axiomatizes the agent’s beliefs. Thus the deduction model and its associated logics
B and gB thus lend themselves to implementation in mechanical theorem-proving

processes as a means of giving Al systems the capability of reasoning about beliefs.

The resolution proof methods that were developed in the second half of
the thesis promise to-be an important practical advance in implementing this goal.
Because of the correspondence property, these methods can also be used for possible-
world models, and perhaps make existing systems like KAMP (Appelt [1]) more

efficient.

The correspondence property is an interesting technical result of the thesis.
Given a suitable common language for talking about the deduction and possible-
world models, it turns out that the same statements are true of each of these models,
as long as the deduction model is restricted to having sound and complete belief
derivation for agents. So, despite the negative results of Montague, we are able
to reconcile two divergent approaches to belief: the syntactic, symbol-processing
paradigm whose origins are with Frege, and the more recent model-theoretic ap-
proaches of Hintikka and Kripke. We are free to interpret the language in whatever

way satisfies our intuitions about belief.

Section 13.2: Future Directions 279

13.2 Future Directions

As in most thesis endeavors, the hard part was knowing when to stop. There
are many more topics that need to be covered before a truly coherent theory of
deductive belief can be soundly established; this thesis formulates only a portion of

that theory.

Two of the major issues we treated only partially were practical proof meth-
ods and theoretical computational issues. Regarding the former: although we de-
veloped resolution and rule-based systems for commonsense reasoning about belief,
we have almost no experience in the practical application of these techniques in Al
systems. They show promise of efficiency, but have yet to be tested; and although
we do not actually expect it, it is conceivable that computational problems could

limit their applicability. This is one of the most urgent areas for future work.

A second topic that was mentioned throughout the thesis but not really de-
veloped was to employ the deduction model to answer questions of a theoretical
nature about belief as computation. We came closest to this in the theory of in-
trospection, and already have some preliminary results that are not included in the
thesis, of the following nature. Suppose we are given a robot agent with a belief
subsystem that always returns an answer in a finite amount of time. Qur goal is to
give the agent some knowledge of his own beliefs, that is, to convert his belief sub-
system into an introspective one. What is the best possible introspective behavior
we can hope to achieve, in terms of the properties of faithfulness and fulfillment
defined in Chapter 7, while still retaining the finite character of the computation?
The answer turns out to be total faithfulness. That is, the attempt to establish
either positive or negative fulfillment may result in altering the finite character of

the belief derivation process for the agent.

On a more ambitious scale, we can consider trying to analyze the computa-
tional properties of other extended inference rules by using the deduction model.

Our ideas here are admittedly tentative and vague; but the framework of viewing

280 Section 13.2: Future Directions

nonmonotonic inference as deduction over a complete theory seems to be a fruitful
one. The first attempt here might be to develop further the theory of ignorance pre-
sented .in Section 5.2. It may be possible to answer questions about computational

limitations on reasening about ignorance, along the lines suggested for introspective

reasoning.

Finally, the deduction model of beliefl must be integrated with other cogni-
tive processes if we are to develop truly intelligent robot agents that can perform
commonsense reasoning. We have mentioned in the introduction some of the prob-
lems that were not addressed: belief revision and the interaction of belief and other
components of cognition beilng the most important. This is a task that has barely

begun.

Languages
Lo
L

LB

L%

AL

Tableau Systems

To

MCT

Q11— Q2

Deduction Structures

d = (B, R)

dy

Glossary

first-order language with constant terms only.

agents’ language. Usually assumed to be the
same as the system’s language.

language of the systems B(Lyp, p). Has modal op-
erators [S;]p, where p is a sentence (no quantifying-
in).

language of the systems qB(Lg, p). Has modal
operators [S;]¢, where ¢ is a formula that may
have free variables (quantifying-in).

language of the resolution system R. Has bullet
terms of the form er.

First-order complete rules for block tableaux (Def-
inition 3.4).

Ty is a subsystem of Tp (Definition 3.5). If 71 C
T and T2 € Ty, then T} =~ T5.

tableau system €} extends Q2 (Definition 7.2).

deduction structure with base set B and rules R
(Section 2.2).

deduction structure of the view wv.

282

D(L, R) class of deduction structures formed from a lan-
guage L and rules R.

Models
B(L, p)-model =< vg, 0, U, {... d; ...} >
class of models parameterized by a language L
and rule sets p(i) for every agent S;. vy, ¢, and U
give a first-order valuation of L, and the deduc-
tion structures d; give an interpretation of the
modal atoms of L (Definition 4.4).

BT-model Model for the situation logic BT (Section 5.4).
Consists of a sequence of B-models.

Logic Families

B(L, p) basic belief logic family. L is the agents’ lan-
guage, p an ensemble of deduction rule sets, one
for each agent (Definition 3.7).

BK nonintrospective belief logic family, using the at-
tachment rule A (Definition 3.9).
BK; saturated BK, in which the rules of BK are ad-

missible for every agent.

BSn introspective belief logic families BS4 and BS5
(Definition 7.1).

Expressions
Modal An atom of the form [5;]¢.
Circumscriptive
An atom of the form (S : I')p. Means that p

follows from I' in S’s belief subsystemn [Section
5.2).

Ordinary A nonmodal atom or sentence.

Ground A formula with no free variables.

Orthodox A formula with no bullet terms.

Glossary

Appendix A. Proof of the Wise Man Puzzie

We solve the Wise Man Puzzle using the decision procedure DPP developed
in Section 10.3 for saturated B*. 81, 82, and 83 are the three wise men. t1 is the
initial situation, t2 the situation after the first wise man speaks, and t3 after the
second speaks. p1 is the proposition that the first wise man’s spot is white, p2 the

second’s, and p3 the third’s. The axioms are:
axiom W1 plAp2Ap3
In the real world, everyone’s spot is white.

axiom W2 [F,t1](pivp2vp3)

It’s a common belief that at least one spot is white.

axiom W3 [F,t1](p12[s2,t1]p1)
axiom W3 [F,t1](p1d>[e3,t1]p1)
axiom W3 [F,t1](p2>[s1,t1]1p2)
axiom W3 [F,t1](p23([s3,+t1]p2)
axiom W3 [F,t1] (p3>[s1,t1]1p3)
axiom W3 [F,t1] (p32[s2,t1]p3)
axiom W3 [F,t1] (-p12[s2,t1]-pl)
axiom W3 [F,t1] (-p12[s83,t1]-pl)
axiom W3 [F,t1] (-p2d([s1,t1]-p2)
axiom W3 [F,t1] (-p23[e3,t1]1-p2)
axiom W3 [F,t1](-p3d[s1,t1]-p3)
axiom W3 [F,t1] (-p32[s2,t1]-p3)

284 Appendix A: Proof of the Wise Man Puzzle

axiom W4 pi13[s2,t1lpl
axiom W4 p1d3[s3,t1]pl
axiom W4 p23[sel,t1]p2
axiom W4 p22[s3,t1]p2
axiom W4 p3d2[s1,t1]p3
axiom W4 p32[s2,t1]p3
axiom W4 -p13[s2,t1]-pl
axiom W4 -p1J[s3,t1]-pl
axiom W4 -p23[si,t1]-p2
axiom W4 -p23[s3,t1]-p2
axiom W4 -p3d([s1,t1]-p3
axiom W4 -p32[s2,t1]-p3

The W3 axioms express the common belief that each of the wise men hold about
each other’s perceptual abilities. W4 states that these abilities actually hold in the

real world.

axiom L1 [s1,t1]1p1d[F,t2] [s1,t1]p1
axiom L1 -[s1,t1]p12[F,t2]-0[s1,t1]p1

axiom L2 [e2,t2]p2D[F,t3][s2, t2]p2
axiom L2 -[s2,t2]p20[F,t3]-~[62,t2]p2

L1 and L2 are the learining axioms. L1 states that whatever g1 believes about his
spot in situation t1 becomes a common belief in situation t2, i.e., s1 has commu-

nicated this fdct to the others. L2 does the same for 82 in situation t2.

axiom PK1 p2 A p3
axiom C1 <s1:W2,W3,W4,PK1>pl = [s1,t1]lpl

axiom SK1 [s1,t1]pi
axiom SK2 -{s1,t1]lpl
axiom PK2 pl A p3

axiom C2 [s1,t1]pl 2 (<s2:W2,W3,6W4,L1,SK1,PK2>p2 = [s2,t2]p2)
axiom C2 =[s1,t1]lpl 2 (<s2:¥W2,W3,W4,L1,SK2,PK2>p2 = [82,t2]1p2)

Appendix A: Proof of the Wise Man Puzzle 285

C1 and C2 are the axioms that describe the circumscription of beliefs for the agents
81 in situation t1 and 82 in t2. H sl can infer p1 from W2, W3, W4, and the two
white spots that he sees, then he knows the color of his own spot; and if he cannot,
then he does not know it. In t2, the situation is more complicated, because 82 has
learned that 81 either knows the color of his own spot, or does not. The statement
of circumscription depends on which of these actually obtains, and the axiom €2
takes each of the possible outcomes into account. Note that this axiomatization is

essentially the same as the one in Section 6.3.

The clause form of the axioms is as follows:

F1: pl A (p2 A p3)

W2: [F,t11(p1 v (p2 V p3))

w3: [F,ti11(p1 2> ([s2,t1]p1))
W3: [F,t11(p1 d> ([e3,t1lp1))
w3: [F,t1]1(p2 2> ([s1,t1]1p2))
w3: [F,.t11(p2 o> ([s3,t1]1p2))
w3: [F,t1]1(p3 > ([s1,t1]1p3))
W3: [F.t11(p3 > ([s2,t1]1p3))
W3: [F,t11(-pl 2 ([82,t1]-p1))
W3: [F,t11(-p1 2 ([s3,t1]1-p1))
W3: [F,t11(-p2 2 ([s1,t1]-p2))
wW3: [F.t11(-p2 2 ([83,t1]1-p2))
w3: I[F,t1]1(-p3 > ([s1,t1]-p3))
w3: [F.t11(-p3 2 ([e2,t1]17p3))
Wa: pl 2 ([s2,t1lpl)

W4: - p1 2 ([s3,t1]p1)

W4: p2 I ([s1,t1]1p2)

W4: p2 > ([s3,t1]1p2)

W4: p3 2 ([s1,t1]1p3)

W4: p3 2 ([s2,t1]p3)

Wa: -pl 2 ([s2,t1]-pl1)

Wa: -1p1 J ([83,1}1]-1})1)

W4: -p2 > ([81,1‘;1]-@2)

W4: =p2 D ([83,t1]-p2)

W4: =p3 2 ([s1,t1]-p3)

W4: -p3 2 ([s2,t1]1-7p3)
L1: ([ei,t1]p1) 2 ([F,t2]1([sl,t1]1p1))
L1: =lel,t1]lpl > ([F,t2]-[s1,t1]p1)

286 Appendix A: Proof of the Wise Man Puzzle

L2: ([s2,t2]p2) 2> ([F,t3]1([s2,t2]1p2))

L2: =[s2,t2]1p2 > ([F,t3]1-[s2,t2]1p2)

PKi: p2 A p3

Ci: (<s1:W2,W3,W4,PK1>p1) = ([s1,t1lpl)

SK1: [s1,t1lpl

SK2: -[s1l,tilpt

PK2: pi A p3

c2: ([s1,t1lp1) J ((<s2:W2,W3,W4,L1,5K1,PK2>p2) = ([s2,t2]1p2))
Cc2: -[s1,t1lpl D ((<82:W2,W3,W4,L1,SK2,PK2>p2) = ([s2,t21p2))

These clauses, along with the goal clause

Goal: -[83,t3]1p3

were submitted to an implementation of the DPP procedure on a2 Symbolics 3600
Lisp machine. The resultant proof took approximately 3 seconds. The trace of the
proof follows, showing the 15 recursive calls to the procedure that were generated.

No splits were necessary.

1. Entering DPP level ()

Attaching to circ 1lit <82:W2,W3,W4,L1,SK2,PK2>p2 in clause C2
2. Entering DPP level (CIRC)

2. At level (CIRC) with negative modal atoms:

SK2: =[s1,t1]pl

Attaching to modal atom SK2: -[si,tilpl

3. Entering DPP level ((s1 t1) CIRC)

3. Satisfied! at level ((sl tl1) CIRC)

2. At level (CIRC) Satisfied attachment to SK2: -[sl,tilpl
2. Satisfied! at level (CIRC)

False circ lit <g2:W2,W3,W4,L1,S8K2,PK2>p2 in clause C2

Attaching to circ lit -<s2:W2,W3,W4,L1,5K2,PK2>p2 in c¢lause C2
4. Entering DPP level (CIRC)
4. At level (CIRC) with negative modal atoms:

sK2: -[s1,t1]p1

Attaching to modal atom SK2: -[si,t1lpl

5. Entering DPP level ((s1 t1) CIRC)

5. Satisfied! at level ({sl t1) CIRC)
4. At level (CIRC) Satisfied attachment to SK2: -[s1,ti]pl
4. Satisfied! at level (CIRC)

Appendix A: Proof of the Wise Man Puzzle 287

True circ 1it -<s2:W2,W3,W4,L1,5K2,PK2>p2 in clause C2
Attaching to circ lit <s2:W2,W3,W4,L1,S5K1,PK2>p2 in clause C2
6. Entering DPP level (CIRC)
6. Satisfied! at level (CIRC)
False circ 1it <s2:W2,W3,W4,L1,5K1,PK2>p2 in clause C2
Attaching to circ 1lit -<s2:W2,W3,W4,L1,5K1,PK2>p2 in clause C2
7. Entering DPP level (CIRC)
7. Satisfied! at level (CIRC)
True circ 1lit -<s2:W2,W3,W4,L1,5K1,PK2>p2 in clause C2
Attaching to circ 1lit <s1:W2,W3,W4,PKi>pl in clause Ci
8. Entering DPP level (CIRC)
8. Satisfied! at level (CIRC)
False circ lit <g1:W2,W3,W4,PKi>pl in clause Ci
1. At level () with negative modal atoms:
c2: -[s2,t2]p2
Ci: =[si1,t1lpl
GOAL: -[s3,t3]p3
Attaching to modal atom C2: -[s2,t2]p2
9. Entering DPP level ((s2 t2))
9. At level ((s2 t2)) with negative modal atoms:
Li: -[s1,t1lpil
Attaching to modal atom L1: -[s1,ti]pl
10. Entering DPP level ((sl t1) (82 t2))
10. Satisfied! at level ((sl t1) (s2 t2))
9. At level ((s2 t2)) Satisfied attachment to L1: -[s1,t1]pl
9. Satisfied! at level ((s2 t2))
1. At level () Satisfied attachment to C2: -[s2,t2]p2
Attaching to modal atom Ci: -[si,ti]lpl
11. Entering DPP level ((s1 ti))
11. Satisfied! at level ((s1 t1))
1. At level () Satisfied attachment to C1: -[si,t1]pi
Attaching to modal atom GOAL: -[g3,t3]p3
12. Entering DPP level ((s3 t3))
12. At level ((s3 t3)) with negative modal atoms:
Li: -[si,ti]pl
L2: -[s2,t2]p2
Attaching to modal atom L1: -[si,ti]pt
13. Entering DPP level ((sl1 ti) (83 t3))
13. Satisfied! at level ((sl ti1) (83 t3))
12. At level ((83 t3)) Satisfied attachment to L1: -~[s1,ti]pl
Attaching to modal atom L2: -[s2,t2]p2
14. Entering DPP level ((s2 t2) (83 t3))

288 Appendix A: Proof of the Wise Man Puzzle

14. At level ((82 t2) (83 t3)) with negative modal atoms:
L1: a[s1,t1]p1
Attaching to modal atom L1: -[sl,tilpil
15. Entering DPP level ((s1 t1) (82 t2) (83 t3))
15. UnSatisfied! at level ((sl t1) (82 t2) (83 t3))
14. At level ((s2 t2) (83 t3)) Failed attachment to L1: =[sl,t1]pl
14. UnSatisfied! at level ({82 t2) (83 t3))
12. At level ((s3 t3)) Failed attachment to L2: -[s2,t2]p2
12. UnSatisfied! at level ((s3 t3))
1. At level () Failed attachment to GDAL: -[s3,t3]p3
1. UnSatisfied! at level ()

The numbers refer to a particular call to DPP. The basic structure of the proof is as
follows. The procedure is first entered (call 1), and the reduction rules Single and
Dctach applied to eliminate as many clauses as possible. Next all the circumscriptive
literals are evaluated; this produces calls 2-8 to DPP in the proof trace. The level
of the call is simply the chain of attachments that led to the call. Hence a level
of ((81 t1) Circ) means that the call was generated first by an attachment to a
circumscription literal, then by attachment to the beliefs of agent s1 in situation
t1. Looking at calls 2 and 3, we find a typical sequence. In trying to find whether
the circumscriptive literal in clause C2 is valid or not, a recursive call to DPP is
made. The reduction rules apply, and finally an irreducible set of belief literals is
obtained (there is no splitting). Each of the negative belief literals of the set must
be checked for satisfiability: there is only one, and DPP is called on it (call 3}.
The negative belief literal =81, t11p1 is satisfied because s1 indeed does not know
the color of his own spot in t1. Thus the only negative literal remaining in call 2
is satisfied, and so the call returns the information that its input can be satisfied.
This means that the circumscriptive literal is always false, and can be eliminated

from the clause €2 in which it occurs.

The proof through call 8 determines that s1 and 82 are ignorant of their
own spot’s color: thus the singleton clauses ~[s1,t1]p1 and -[s2,t2]p2 have
been deduced from the circumscriptive axioms €1 and €2, respectively. At this

point there is only an irreducible set of belief literals that must be checked for

Appendix A: Proof of the Wise Man Puzzle 289

satisfiability, and the proof trace returns to the first call to DPP, showing what
negative modal atoms exist. Each of these is checked for satisfiability by calling
the DPP procedure recursively: the first at call 9, the second at call 11, and the
third at call 12. This last call is for the goal literal ~[83, t3]1p3, which is found to
he inconsistent with the rest of the belief literals. It is interesting to see that the
reasoning needed to find the inconsistency involves attaching to 83’s view of 82’s

view of 81’s beliefs, just as in the sequent proof in Section 6.3.

References

[1] Appelt, D. E., “Planning Natural-Language Utterances to Satisfy Multiple
Goals,” SRI Artificial Intelligence Center Technical Note 259, SRI Inter-
national, Menlo Park, California (1982).

[2] Barwise, J. and Perry, J., Situations and Attitudes, MIT Press, Cambridge,
Massachusetts, 1983.

[3] Boolos, G., The Unprovability of Consistency, Cambridge University Press,
1979,

[4] Brachman, R., “Recent Advances in Representational Languages,” Invited
lecture at the National Conference on Artificial Intelligence, Stanford
University, Stanford, California (1980).

[5] Chang, C. L. and Lee, R. C. T., Symbolic Logic and Mechanical Theorem
Proving, Academic Press, New York, 1973.

[6] Clark, H., “Responding to Indirect Speech Acts,” Cognitive Psychology 11,
4 (1979).
[7] Collins, A. M., Warnock, E., Aiello, N. and Miller, M., “Reasoning from

Incomplete Knowledge,” in Representation and Understanding, Bobrow,
D. G., and Collins, A. (eds.), Academic Press, New York (1975).

[8] Creary, L. G., “Propositional attitudes: Fregean representation and simu-
lative reasoning,” Proceedings of the 6th International Joint Conference
on Artificial Intelligence, Tokyo (1979), pp. 176-181.

[9] Davis, M., and Putnam, H., “A Computing Procedure for Quantifica-
tion Theory,” Journal of the Association for Computing Machinery 7,
3 (1960), pp. 201-215.

[10] Doyle, J., “Truth Maintenance Systems for Problem Solving,” Artificial
Intelligence Laboratory Technical Report 419, Massachusetts Institute of
Technology, Cambridge, Massachusetts (1978).

292 References

[11] Farifnas-del-Cerro, L., Deduction Automatique et Logique Modale, Thése
d’Etat, Laboratoire Informatique Théorique et Programmation, Univer-
sité Paris VII, Paris, France, 1981.

[12] Farifias-del-Cerro, L., “Temporal Reasoning and Termination of Programs,”
Proceedings of the Eighth International Joint Conference on Artificial
Intelligence, Universitit Karlsrube, Karlsruhe, West Germany (1983),
pp. 926-929.

(13] Foder, J. A., The Language of Thought, Thomas Y. Cromwell Company,
New York, New York, 1975.

[14] Goad, C., “A Formal Representation for Situations Involving Knowledge,”
unpublished note, Stanford University, Stanford, California (1976).

[15] Gilmore, P., “The Consistency of Partial Set Theory without Extension-
ality,” in Axiomatic Set Theory, T. Jech (ed.), American Math Society
(1974), pp. 147-153.

[16] Green, C., “Theorem Proving by Resolution as a Basis for Question- Answering
Systems,” in Machine Intelligence 4, D. Michie and B. Meltzer (eds.), Ed-
inburgh University Press, Edinburgh, Scotland (1969).

[17] Haspel, C. H., A Study of some Interpretations of Modal and Intuitionis-
tic Logics in the First Order Predicate Calculus, Doctoral dissertation,
Syracuse University, Syracuse, New York, 1972.

[18] Hayes, P. J., “In Defence of Logic,” Proceedings of the 5th International
Joint Conference on Artificial Intelligence, Massachusetts Institute of
Technology, Cambridge, Massachusetts (1977), pp. 539-565.

[19] Hewitt, C., Description and Theoretical Anlysis (Using Schemata) of PLAN-
NER: A Language for Proving Theorems and Manipulating Models in
a Robot, Doctoral dissertation, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1972.

[20] Hintikka, J., “Form and Content in Quantification Theory,” Acta Philsoph-
ica Fennica 8 (1955), pp. 7-55.

[21] Hintikka, J., Knowledge and Belief, Cornell University Press, Ithaca, New
York, 1962.

[22] Hintikka, J., “Semantics for Propositional Attitudes,” in Reference and
Modality, L. Linsky (ed.), Oxford University Press, London (1971), pp. 145-
167.

[23] Hughes, G. E. and Cresswell, M. J., Introduction to Modal Logic, Methuen
and Company Ltd., London, England, 1968.

. =5

References 293

[24] Israel, D. J., “What’s Wrong with Non-Monotonic Logic?,” Proceedings of
the First National Conference on Artificial Intelligence, Stanford Univer-
sity, Stanford, California (1980).

[25] Johnson-Laird, P. N. and Steedman, M., “The Psychology of Syllogisms,”
Cognitive Psychology 10, 1 (1978), pp. 64-100.

[26] Johnson-Laird, P. N., “Mental Models in Cognitive Science,” Cognitive Sci-
ence 4 (1980), pp. 71-115.

[27] Kleene, S. C., Introduction to Metamathematics, D. Van Nostrand Com-
pany, Princeton, New Jersey, 1952.

[28] Kleene, S. C., Mathematical Logic, John Wiley and Sons, New York, 1967.

[29] Konig, D., “Sur les correspondences multivoques des ensembles,” Funda-
menta Mathematicae 8 (1926), pp. 114-34.

[30] Konolige, K., “A First Order Formalization of Knowledge and Action for a
Multiagent Planning System,” in Machine Intelligence 10, J. E. Hayes, D.
Michie, and Y-H Pao (eds.), Ellis Horwood Limited, Chichester, England
(1982),

[31] Konolige, K., “Circumscriptive Ignorance,” Proceedings of the Second Na-
tional Conference on Artificial Intelligence, Carnegie-Mellon University,
Pittsburgh, Pennsylvania (1982).

[32] Konolige, K., “Modal Logics for Belief,” unpublished note (1982).

[33] Konolige, K., “A Deductive Model of Belief,” Proceedings of the Eighth In-
ternational Joint Conference on Artificial Intelligence, Universitat Karl-
sruhe, Karlsruhe, West Germany (1983).

[34] Kowalski, R., Logic for Problem Solving, North-Holland, New York, 1979.

[35] Kripke, S. A., “A Completeness Theorem in Modal Logic,” Journal of Sym-
bolic Logic 24 (1959), pp. 1-15.

[36] Kripke, S. A., “Semantical Considerations on Modal Logic,” Acta Philo-
sophica Fennica 18 (1963), pp. 83-94.

[37] Kripke, S. A., “Naming and Necessity,” in Semantics of Natural Language,
D. Davidson and G. Harmon (eds.), D. Reidel Publishing Company, Dor-
drecht, Holland (1972), pp. 253-355.

[38] Levesque, H. J., “A Formal Treatment of Incomplete Knowledge Bases,”
FLAIR Technical Report No. 614, Fairchild, Palo Alto, California {1982).

[39] Levesque, H. J., “A Logic of Knowledge and Active Belief,” Proceedings of
the Fourth National Conference on Artificial Intelligence, Austin, Texas
(1984).

204

References

[40] Lycan, W. G., “Toward a Homuncular Theory of Believing,” Cognitior and
Brain Theory 4, 2 (1981), pp. 139-59.

[41] Maida, A. 8., “Knowing Intensional Individuals, and Reasoning about Know-
ing Intensional Individuals,” Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, Universitit Karlsruhe, Karlsruhe,
West Germany (1983), pp. 382-384.

[42] McCarthy, J., “Towards a Mathematical Science of Computation,” Infor-
mation Processing, Proceedings of the IFIP Congress 62, North-Holland
Publishing Company, Amsterdam (1962), pp. 21-28.

[43] McCarthy, J., Sato, M., Hayashi, T., and Igarashi, S., “On the Model
Theory of Knowledge,” Stanford Artificial Intelligence Laboratory Memo
AIM-312, Stanford University, Stanford (1978).

[44] McCarthy, J., “Formalization of two puzzles involving knowledge,” unpub-
lished note, Stanford University, Stanford, California (1978}).

[45] McCarthy, J., and Hayes, P. J., “Some Philosophical Problems form the
Standpoint of Artificial Intelligence,” in Machine Intelligence 4, B. Meltzer
and D. Michie (eds.), Edinburgh University Press, Edinburgh, Scotland
(1969), pp. 463-502.

[46] McCarthy, J., “First Order Theories of Individual Concepts and Proposi-
tions,” in Machine Intelligence 8, B. Meltzer and D. Michie (eds.), Edin-
burgh University Press, Edinburgh, Scotland (1979), pp. 120-147.

[47] McCarthy, J., “Circumscription—A Form of Non-Monotonic Reasoning,”
Artificial Intelligence 13, 1-2 (1980).

[48] McDermott, D. and Doyle, J., “Non-Monotonic Logic I,” Artificial Intelli-
gence 13, 1-2 (1980).

[49] Mont;}gue, R., “Syntactical Treatments of Modality, with Corollaries on Re-
flexion Principles and Finite Axiomatizability,” Acta Philosophica Fen-
nica 18 (1963), pp. 153-67.

[50] Moore, R. C., “Reasoning from Incomplete Knowledge in a Procedural
Deduction System,” MIT Artificial Intelligence Laboratory, AI-TR-347
(1975).

[51] Moore, R. C., “Reasoning About Knowledge and Action,” Artificial Intel-
ligence Center Technical Note 191, SRI International, Menlo Park, Cali-
fornia (1980).

[52] Moore, R. C, “Semantical Considerations on Nonmonotonic Logic,” SRI Ar-
tificial Intelligence Center Technical Note 284, SRI International, Menlo
Park, California {1983).

References 295

[53] Moore, R. C. and Hendrix, G. G., “Computational Models of Belief and the
Semantics of Belief Sentences,” SRI Artificial Intelligence Center Techni-
cal Note 187, SRI International, Menlo Park, California (1979).

[54] Nilsson, N., Principles of Artificial Intelligence, Tioga Publishing Co., Palo
Alto, California, 1980.

[55] Perlis, D., “Language, Comptation, and Reality,” Department of Computer
Science TR95, University of Rochester, Rochester, New York (1981).

[56] Perlis, D., “True Beliefs 1,” unpublished ms. (1984).
[57] Perry, J., “The Problem of the Essential Indexical,” NOUS 13 (1979),

pp- 3-21.

[58] Reiter, R., “A Logic for Default Reasoning,” Artificial Intelligence 13, 1-2
(1980).

[59] Robinson, J. A., Logic: Form and Function, Elsevier North Holland, New
York, 1979.

[60] Robinson, J. A., “A Machine-Oriented Logic Based on the Resolution Prin-
ciple,” Journal of the Association for Computing Machinery 12 (1965),
pp. 23-41.

[61] Sato, M., A Study of Kripke-type Models for Some Modal Logics by Gentzen’s
Sequential Method, Doctoral dissertation, Research Institute for Mathe-
matical Sciences, Kyoto University, Kyoto, Japan, 1976.

[62]) Schubert, L. K., “Extending the Expressive Power of Semantic Nets,” Ar-
tificial Intelligence 7, 2 (1976), pp. 163-198.

[63] Smullyan, R. M., First-Order Logic, Springer-Verlag, New York, 1968.

[64] Stallman, R. M. and Sussman, G. J., “Forward Reasoning and Dependency-
Directed Backtracking in a System for Computer-Aided Circuit Analy-
sis,” MIT Artificial Intelligence Laboratory, AI-TR-297 (1976).

[65) Warren, D. H. D., “WARPLAN: A System for Generating Plans,” Dept.
of Computational Logic Memo 76, University of Edinburgh School of
Artificial Intelligence, Edinburgh, Scotland (1974).

[66] Weyhrauch, R., “Prolegomena to a Theory of Mechanized Formal Reason-
ing,” Artificial Intelligence 13 (1980).

[67] Winograd, T., “Extended Inference Modes in Reasoning by Computer Sys-
tems,” Artificial Intelligence 13, 1-2 (1980).

[68] Woods, W., “What’s in a Link?,” in Representation and Understanding,
Bobrow, D. G., and Collins, A. {eds.), Academic Press, New York (1975).

